道路车辆悬架系统运动学设计与分析
1. 双横臂转向运动学
在车辆动力学中,双横臂悬架系统的运动学分析是一个重要的研究领域。当设定轴距 $a = 2.7$ m,并通过 $s = 2\times par.rvwk(2)$ 将轮距分配给车轮中心的 $y$ 坐标时,就可以将悬架运动学与阿克曼转向几何进行比较。
阿克曼转向几何给出了两个车轮转向角之间的关系,类似于公式 $\tan \delta_{A2} = \frac{a \tan \delta_1}{a + s \tan \delta_1}$,其中 $\delta_{A2}$ 是第二个车轮的阿克曼转向角,$\delta_1$ 是第一个车轮的转向角。从图中可以看出,双横臂悬架系统的设计与阿克曼转向几何非常接近。
需要注意的是,双横臂悬架与齿轮齿条转向系统相结合的运动学对几何数据很敏感,可能会出现奇异位置,即运动学无法定义的情况。因此,这里通过参数 $par.umx$ 和 $par.phmx$ 指定了下控制臂的最大旋转角度和齿条的最大位移。如果过度增加这些值或不恰当地更改几何数据,可能会导致 MATLAB 生成警告或错误消息。
2. 设计运动学
2.1 一般方法
车轮/车轴悬架的运动学可以用两个广义坐标来描述。在更一般的方法中,车轮中心 $W$ 的位置和转向节相对于车辆固定参考系 $V$ 的方向可以定义为:
$r_{VW,V} = r_{D_{VW,V}} + \begin{bmatrix}x(u, h)\y(u, h)\z(u, h)\end{bmatrix}$
$A_{VW} = A_{\gamma(u, h)} A_{\alpha(u, h)} A