SCOI2005互不侵犯

基础版

 

按行转移

  • 两个判断:
    • 本集合(行)内是否冲突
    • 不同行之间是否冲突(即是否互为八个方向之一)
  • 动态转移方程
    • 通过循环来实现
#include <bits/stdc++.h>
using namespace std;

const int N = 15;
int n, k;
long long f[N][N * N][1 << N];

int size(int s) 
{
int cnt = 0;
for (; s; s >>= 1) {
cnt += s & 1;
}
return cnt;
}

bool check(int s) 
{
if (s & (s << 1)) return false; //本集合内国王是否冲突 
return true;
}

bool check(int s, int t) { //两行之间的国王是否冲突 
if ((t & s) || (s & (t << 1)) || ((s << 1) & t)) return false;
return true;
}

int main() 
{ 
ios::sync_with_stdio(false);
cin >> n >> k;
int m = 1 << n;
f[0][0][0] = 1; //边界 
//f[i][j][S]表示正在处理第i行,第i行放的格子集合为S,前i行共放了j个国王 
for (int i = 1; i <= n + 1; i++) //
for (int s = 0; s < m; s++) { // 枚举当前行的状态 
if (check(s))
for (int t = 0; t < m; t++) { //枚举上一行的状态 
if (check(t) && check(s, t)) {
int sz = size(s);
for (int j = sz; j <= k; j++) //国王个数 
f[i][j][s] += f[i - 1][j - sz][t]; //由上一行转移来 
}
}
}
cout << f[n + 1][k][0]; 
}
View Code

 

(我再去研究下高级版怎么写(逃 )

转载于:https://www.cnblogs.com/phemiku/p/11617174.html

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值