芯片供电引脚为什么要放一个104电容?

每个芯片的电源都要接一个104电容是为什么?

这颗电容叫高频旁路电容,作用就是把电源中的高频杂波对地短路防止高频污染,降低电源输入对芯片的影响。

接地滤波电容,如果没有,杂波干扰非常大,有了这个滤波电容,可以使供电稳定而不会受到干扰。

104是指电容的容值:就是100000pf=100nf=0.1uf;

那么为什么是104,不是其他?

很多时候,我们都会看到芯片引脚旁边总会放一颗104小电容。这颗电容叫高频旁路电容,一般也叫去耦电容。作用是滤除IC供电电源中的高频谐波,降低电源中的杂波对芯片的干扰。

首先来看看电容,电容的作用简单的说就是存储电荷。我们都知道在电源中要加电容滤波,在每个芯片的电源脚放置一个0.1uF的电容去耦。为什么芯片的电源脚旁边的电容是0.1uF的或者0.01uF的,有什么讲究吗。要搞懂这个就要了解电容的实际特性。理想的电容它只是一个电荷的存储器,即C。实际的电容其实并不是理想的电容,在制造当中会有个ESR,ESL在里面,也就是等效电阻,等效电感在里面。 频率越高时,等效电感会产生作用,有可能会成为主导,电容变成了电感。

在分析电源完整性的时候我们常用的电容模型如下图所示。

图中ESR是电容的串联等效电阻,ESL是电容的串联等效电感,C才是真正的理想电容。ESR和ESL是由电容的制造工艺和材料决定的,没法消除。那这两个东西对电路有什么影响。ESR影响电源的纹波,ESL影响电容的滤波频率特性。

我们知道电容的容抗Zc=1/ωC,电感的感抗Zl=ωL,( ω=2πf),实际电容的复阻抗为

Z=ESR+jωL-1/jωC= ESR+j2πf L-1/j2πf C。可见当频率很低的时候是电容起作用,而频率高到一定的时候电感的作用就不可忽视了,再高的时候电感就起主导作用了。电容就失去滤波的作用了。所以记住,高频的时候电容就不是单纯的电容了。实际电容的滤波曲线如下图所示。

参见上图,我们想要的最好的滤波效果是在“谷”底,就是曲线凹进去的尖尖,在这个尖尖的时候,滤波效果做好,当我们的芯片IC内部的逻辑门在10-50Mhz范围内执行的时候,芯片内部产生的干扰也在10-50Mhz,(比如51单片机),仔细看上图的曲线,0.1uF电容 (有两种,一种是插件,一种是贴片)的谷底刚好落在了这个范围内,所以能够滤除这个频段的干扰,但是,当频率很高的时候(50-100Mhz),就不是那么回事了,这个时候0.1uF电容个滤波效果就没有0.01uF好了,以此类推,频率再高,选用的滤波电容的量级还要变小,参考如下

频率范围,   电容取值

DC-100K,   10uF以上的钽电容或铝电解

100K-10M, 100nF(0.1uF)陶瓷电容

10M-100M, 10nF(0.01uF)陶瓷电容

>100M,        1nF(0.001uF)陶瓷电容

所以,以后不要见到什么都放0.1uF的电容,有些高速系统中这些0.1uF的电容根本就起不了作用。

电容的特性曲线是一个V字形。它有个选频特性。 决定这个V字形曲线尖不尖就看品质因素Q。它由ESR决定。ESR越大,Q越小,曲线越平坦。反之曲线越尖。 一般电解电容与钽电容在制造当中ESR大一点,所以曲线平坦一点,它有很宽的频率范围。陶瓷电容ESR小一点。曲线就尖一点。它在某个窄的频段有效。 所以一般在电源输入输出的地方加电解电容,钽电容,在芯片管脚加小的ESR的陶瓷电容,陶瓷电容有选频特性,把特定频率滤掉。

所以也可以更严谨的说:一般电路板所有芯片电源管脚都会放一个0.1uF电容或者是0.01uF电容。

最后要注意,在PCB布局的时候,104要紧靠芯片并且电源和地回路要最短,否则起不到旁路的效果。

### 添加100uF电容于VMOT和GND之间的作用 在A4988驱动板的电机电源引脚(即VMOT和GND)间添加一个100uF电解电容器的主要目的是为了提供电源保护,确保供电稳定性和减少电磁干扰的影响[^1]。当步进电机运行时,特别是在启动、停止或改变方向的过程中,会产生较大的瞬态电流波动以及反电动势。这种情况下,如果电源线路存在一定的阻抗,则可能导致电压降甚至瞬间掉电现象发生。 #### 减少纹波与噪声 大容量电容能够有效地吸收来自负载端产生的高频脉冲信号和其他形式的电气噪音,从而降低整个系统的EMI水平并提高其可靠性。此外,在快速变化的工作条件下,此元件还可以作为临时的能量存储装置,及时补充因突变而造成的能量缺失,维持稳定的直流输出给IC芯片使用[^3]。 #### 提升动态响应性能 对于像A4988这样的精密运动控制系统而言,良好的电源质量至关重要。适当配置旁路/去耦合电容有助于改善内部振荡器精度及逻辑门阈值稳定性等问题;同时也能加快对外界扰动因素作出反应的速度,进而优化整体运作效率。 ```python # Python代码仅用于说明概念,并非实际应用中的必要部分 import matplotlib.pyplot as plt time = range(0, 100) voltage_with_capacitor = [max(0, min(5 + (i % 20 - 10) / 10 * (-1)**((i//2)%2), 5)) for i in time] voltage_without_capacitor = [(lambda x: max(0,min(x,5)))(5 + ((i%20-10)/5)*(-1)**((i//2)%2)) for i in time] plt.plot(time, voltage_with_capacitor, label='With Capacitor') plt.plot(time, voltage_without_capacitor, linestyle='--', color='red', label='Without Capacitor') plt.xlabel('Time Steps') plt.ylabel('Voltage Level') plt.title('Effect of Adding a Decoupling Capacitor on Voltage Stability') plt.legend() plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值