10k 、100k NTC热敏电阻阻值表与温度关系

常用的热敏电阻有10k,100k阻值。

所谓的10k,100k是指该热敏电阻在摄氏25度的时候所对应的阻值。

还有一个重要的参数就是热敏电阻的B值,这个B值网上有很多资料和解读,其实可以把它理解成是该热敏电阻阻值随温度的变化率,他对温度是越来越灵敏还是越迟钝。

简单的理解成B值越大对温度越灵敏,可测的的温度精度更小。

下面对100k,B值=3950的热敏电阻进行实际应用的讲解。首先列出100k热敏电阻的table如下。

<think>好的,我现在需要处理用户关于NTC热敏电阻阻值3380的技术资料、应用电路和计算方法的查询。首先,我要确认用户提到的阻值3380具体指什么。通常,NTC热敏电阻的规格参数包括标称电阻值(如25℃时的阻值,例如10kΩ)、B值(如3380K)等。这里用户提到的是阻值3380,可能指的是B值为3380K的型号,或者是标称阻值为3380Ω(即3.38kΩ)的NTC。需要进一步分析常见的NTC型号,判断哪种可能性更大。 查看引用资料,引用[2]提到NTC热敏电阻的测温计算方法,包括公式法和查法。而引用[1]和[3]分别介绍了Steinhart-Hart方程、B值法以及AD值计算的工具。用户的问题可能涉及如何根据3380这个参数进行温度计算或电路设计。 首先,技术参数方面,若3380是B值,则常见型号如10kΩ B值3380K的NTC,其B值范围通常在25/50℃或25/85℃之间。需要说明B值的定义及其在计算中的应用。若3380是标称阻值,比如3.38kΩ@25℃,则需要提供对应的B值等参数。但通常标称阻值多为整数,如10k、100k等,所以更可能B值是3380K。 应用电路方面,NTC常用于分压电路,将温度变化转换为电压信号,通过ADC读取。需要给出典型的分压电路图,并说明如何选择固定电阻以优化测量范围。同时,可能需要考虑线性化处理或温度补偿方法。 计算方法部分,根据引用[1]和[2],使用Steinhart-Hart方程或B值法。假设用户有B值3380K,可以举例说明如何将阻值转换为温度,或者温度转换为阻值。此外,引用[3]提到的Excel工具可能帮助自动计算AD值,可以推荐使用该工具简化过程。 需要验证用户提供的参数是否足够。例如,若只有B值3380K,可能需要标称电阻值(如25℃时的阻值)才能进行计算。如果用户提供的3380是标称阻值,但未说明温度点,可能需要进一步询问。但根据常见情况,假设是B值3380K,标称阻值10kΩ@25℃的情况较为普遍,因此可以基于此假设进行回答。 总结回答结构:首先解释3380的可能含义,列出技术参数,给出典型应用电路图,介绍两种计算方法(公式法和查法),并推荐使用Excel工具简化计算。最后生成相关问题,引导用户进一步了解。</think>### NTC热敏电阻阻值3380相关)技术解析 #### 一、技术参数分析 若“阻值3380”指**B值3380K**(常见型号如10kΩ@25℃),其核心参数为: 1. **标称阻值**:$R_{25}=10kΩ$(25℃时阻值) 2. **B值范围**:3380K(通常基于25/50℃或25/85℃温度范围) 3. **工作温度**:-40℃~125℃(典型值) 4. **耗散系数**:约2mW/℃(影响自热误差) 5. **热时间常数**:≤10秒(响应速度) 若“3380”指**标称阻值3.38kΩ@25℃**,需补充B值参数(如3435K)才能进行温度计算[^2]。 --- #### 二、典型应用电路 **分压测温电路**: ```text VCC ──┬─── R_fixed(固定电阻) ────┬── ADC输入 │ │ └── NTC(3380相关型号) ──┘ ``` **设计要点**: 1. **固定电阻选择**:建议取$R_{fixed}=R_{NTC(Target)}$(目标温度点的NTC阻值),例如测量25℃时选$R_{fixed}=10kΩ$ 2. **ADC参考电压**:需VCC一致以减少误差 3. **滤波设计**:并联100nF电容降低噪声 --- #### 三、计算方法 1. **B值法公式**(推荐基础计算): $$ \frac{1}{T} = \frac{1}{T_0} + \frac{1}{B} \ln\left(\frac{R_T}{R_0}\right) $$ 其中: - $T$:目标温度(K) - $T_0$:参考温度(通常25℃=298.15K) - $R_T$:当前温度阻值 - $R_0$:标称阻值(如10kΩ) **示例**: 当$R_0=10kΩ@25℃$,测得$R_T=3.38kΩ$时: $$ \frac{1}{T} = \frac{1}{298.15} + \frac{1}{3380} \ln\left(\frac{3380}{10000}\right) \Rightarrow T≈60℃ $$ 2. **Steinhart-Hart方程**(更高精度): $$ \frac{1}{T} = A + B\ln R + C(\ln R)^3 $$ 需通过三点校准获取系数A/B/C[^1] 3. **查法**: 可参考厂商提供的$R-T$对照表快速查询温度值 --- #### 四、推荐工具 使用引用[3]的**Excel自动计算工具**可快速实现: 1. 输入NTC参数(B值、标称阻值) 2. 输入ADC位数和参考电压 3. 自动生成温度-AD值对应 4. 支持生成线性化补偿曲线 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值