时空图像分析:纵向和时间序列图像数据的研究进展
1. 会议概述
第二届时空图像分析国际研讨会(STIA 2012)于 2012 年 10 月 1 日在法国尼斯与国际医学图像计算与计算机辅助干预会议(MICCAI)同期举行。此次研讨会是 2010 年首届时空图像分析国际研讨会(STIA 2010)的延续,而 STIA 2010 又是在 2004 年 MICCAI 上由 Nicholas Ayache 组织的“医学图像中演化过程的检测与量化”教程基础上发展而来。
本次研讨会共收到 22 份投稿,其中 13 份被接受,接受率为 59%。每份投稿都由两到三名专家评审,未得到任何评审专家支持的投稿将被拒绝。
随着临床成像越来越多地利用纵向图像研究来检查由于病理、干预、治疗、神经发育或神经退行性变等因素导致的个体特异性变化,时空时间序列和纵向数据的分析变得越来越重要。例如,心脏成像中的动态器官变化或灌注成像中测量的功能变化,本质上都会产生随时间变化的体积图像数据。
检测和表征由于疾病、创伤或治疗导致的与基线相比的变化,需要新的图像处理和可视化工具来对变化轨迹进行定性和定量评估。然而,将纵向分析从标量数据扩展到高维图像数据、形状或功能变化面临着重大挑战。对纵向数据进行横断面分析无法提供考虑个体重复图像内在相关性的生长或变化模型,也无法告诉我们个体患者相对于可比健康或特定疾病人群随时间的变化情况,而这一点在决策和治疗规划中非常重要。
研讨会的目标是全面讨论时间序列和纵向图像数据的时空分析方法和新进展,并启动对话以定义算法、方法、建模方法和统计分析的通用性质,以便对这些数据进行最佳分析,特别是在具有挑战性的应用场景中。研讨会的投稿主要涉及神经成像应用,但也涉