脑发育中形状复杂度的分析与生物标志物提取
在脑发育研究中,了解不同脑结构的形状复杂度变化对于理解神经发育过程至关重要。本文将介绍一种用于分析脑发育中形状复杂度的方法,并探讨如何提取可作为脑发育生物标志物的脑结构。
1. 脑形状复杂度分析的背景与意义
在医学图像分析领域,机器学习技术尤其是“降维”方法发挥着重要作用。典型的结构磁共振(MR)图像包含约一百万个体素,而通过降维可以将其在低维空间中得到良好表示。脑形状复杂度分析方法通常用单个或少数几个数字来总结形状复杂度,如皮质折叠情况。
有一类描述符专门量化表面复杂度,例如:
- 脑回化指数(GI) :测量平面曲线长度与其包络长度的比率。
- 凸度比(CR) :测量表面面积与其凸包面积的比率。
- 分形维数(FD) :捕捉表面在多尺度表示下的表面积增加率。
- 等周比(IPR) :测量表面面积与所包围体积的三分之二次幂的比率。
- 平均弯曲度(AC) :测量表面与平面的偏差。
还有一些折叠描述符通过对所有表面补丁的特定测量值求和来捕捉形状复杂度的一部分,例如:
- 平均形状指数(AS) :对形状测量值求和。
- 高斯曲率范数(GCN) :对半球状和鞍状程度求和。
- 平均曲率范数(MCN) :对半球状和圆柱状程度求和。
-