细胞运动分析与跟踪算法:原理、方法与应用
1. 心肌细胞运动分析新方法
在心肌细胞研究领域,一种全新的自动化心肌细胞运动分析方法被提出。该方法能够依据不同的运动特征,自动分割具有不同节律的区域,并分别提取这些区域的运动信号。
通过分离具有不同运动模式的区域,此方法能够更精确地表征和分析心肌细胞的运动。由于最终目标是提取低维运动信号,所以分割结果无需十分精确,因为主成分分析(PCA)在提取主要运动信号时能够容忍一定程度的分割误差。
1.1 分割结果与信号提取
如上图所示,展示了CMS分割和信号提取的结果。其中,(a - e) 是五个数据集的分割结果,(f - j) 分别是 (a - e) 的一维运动信号。(a - b) 为单细胞图像,(c - e) 是密集心肌细胞群体的图像。
2. 多时间全局最优的密集3D细胞分割与跟踪
在免疫系统微环境的研究中,时间推移多光子多光谱显微镜能够揭示复杂的组织结构和细胞运动。然而,要实现对这些运动的、数量众多且密集排列的细胞在长时间3D电影中的自动分割和跟踪,以感知和量化基因修饰细胞与野生型细胞之间的细微表型差异,仍然面临挑战。
2.1 现有方法的局限性
目前,细胞跟踪是一个广泛研究的课题,但大多数研究将细胞分割和跟踪步骤独立处理,这导致在数据中频繁出现分割误差。这些误差主要源于细胞形态的时空变异性、仪器在时间采样率上的限制以及频繁的细胞接触。
以下是一些常见的细胞跟踪方法及其局限性:
-