17、细胞运动分析与跟踪算法:原理、方法与应用

细胞运动分析与跟踪算法:原理、方法与应用

1. 心肌细胞运动分析新方法

在心肌细胞研究领域,一种全新的自动化心肌细胞运动分析方法被提出。该方法能够依据不同的运动特征,自动分割具有不同节律的区域,并分别提取这些区域的运动信号。

通过分离具有不同运动模式的区域,此方法能够更精确地表征和分析心肌细胞的运动。由于最终目标是提取低维运动信号,所以分割结果无需十分精确,因为主成分分析(PCA)在提取主要运动信号时能够容忍一定程度的分割误差。

1.1 分割结果与信号提取

分割结果与信号提取
如上图所示,展示了CMS分割和信号提取的结果。其中,(a - e) 是五个数据集的分割结果,(f - j) 分别是 (a - e) 的一维运动信号。(a - b) 为单细胞图像,(c - e) 是密集心肌细胞群体的图像。

2. 多时间全局最优的密集3D细胞分割与跟踪

在免疫系统微环境的研究中,时间推移多光子多光谱显微镜能够揭示复杂的组织结构和细胞运动。然而,要实现对这些运动的、数量众多且密集排列的细胞在长时间3D电影中的自动分割和跟踪,以感知和量化基因修饰细胞与野生型细胞之间的细微表型差异,仍然面临挑战。

2.1 现有方法的局限性

目前,细胞跟踪是一个广泛研究的课题,但大多数研究将细胞分割和跟踪步骤独立处理,这导致在数据中频繁出现分割误差。这些误差主要源于细胞形态的时空变异性、仪器在时间采样率上的限制以及频繁的细胞接触。

以下是一些常见的细胞跟踪方法及其局限性:
-

内容概要:本文档详细介绍了基于事件触发扩展状态观测器(ESO)的分布式非线性车辆队列控制系统的实现。该系统由N+1辆车组成(1个领头车和N个跟随车),每辆车具有非线性动力学模型,考虑了空气阻力、滚动阻力等非线性因素及参数不确定性和外部扰动。通过事件触发ESO估计总扰动,基于动态面控制方法设计分布式控制律,并引入事件触发机制以减少通信和计算负担。系统还包含仿真主循环、结果可视化等功能模块。该实现严格遵循论文所述方法,验证了观测误差有界性、间距误差收敛性等核心结论。 适合人群:具备一定编程基础,对非线性系统控制、事件触发机制、扩展状态观测器等有一定了解的研发人员和研究人员。 使用场景及目标:①研究分布式非线性车辆队列控制系统的理论实现;②理解事件触发机制如何减少通信和计算负担;③掌握扩展状态观测器在非线性系统中的应用;④学习动态面控制方法的设计实现。 其他说明:本文档不仅提供了详细的代码实现,还对每个模块进行了深入解析,包括非线性建模优势、ESO核心优势、动态面控制传统反步法对比、事件触发机制优化等方面。此外,文档还实现了论文中的稳定性分析,通过数值仿真验证了论文的核心结论,确保了系统的稳定性和有效性。建议读者在学习过程中结合代码进行实践,并关注各个模块之间的联系相互作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值