DSSM 微软率先提出。核心是将用户特征和物料特征分别embedding化,然后计算相似度。 训练数据时候,损失函数部分则是常用的二分类交叉熵损失。 在模型训练完毕后,user塔跟item塔各自存储在redis这样的数据库中,线上计算的时候,直接从内存中取到两个向量计算相似度即可。 Youtube 左边是用户特征和请求特征,右边是候选级别的特征