自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

差点就差一点点的专栏

先去做,做出一堆狗屎,再慢慢改吧

  • 博客(52)
  • 资源 (15)
  • 收藏
  • 关注

原创 第7天:使用LSTM模型预测糖尿病

本文介绍了基于PyTorch的糖尿病预测深度学习模型开发过程,主要包含以下内容: 环境配置:使用Python 3.10、PyCharm和PyTorch框架搭建开发环境,并配置了图形显示参数。 数据预处理: 加载糖尿病数据集(dia.xls)并进行探索性分析 可视化13个临床特征分布情况 划分训练集和测试集(比例8:2) 模型实现: 构建神经网络模型(输入层13个特征、隐藏层200个神经元、输出层2分类) 配置超参数(批量大小64、学习率1e-4、训练30轮) 使用GPU加速训练 数据处理类:封装了数据加载、

2025-07-03 13:14:50 224

原创 没苦硬吃-在多邻国上学习日语200天后,我用AI开发了一个日语学习APP

因最近几年工作原因,经常出差日本 ,于是就有了学习日语的打算,经朋友推荐下载了多邻国APP进行学习,这个APP总体上非常的好用,我在学习了200+天后,发现读音没问题,但是看到日文中的“汉字”却不会发音(有可能我学习的进度太慢,还没学习到),我就想有没有丰富的日语词汇可以查询和学习,强化记忆的。刚好最近在研究AI编程,于是大约一周时间,边摸索边开发,终于第一版出来了。(本APP纯为学习而用,不打算上架,估计有不少bug,有兴趣的可以在文末下载玩玩,也欢迎交流)## 📱 应用简介。

2025-07-02 19:55:26 1011

原创 第6天:预测天气

本文记录了365天深度学习训练营中关于天气预测任务的实践过程。首先通过Python 3.10和PyCharm环境对澳大利亚天气数据进行预处理,包括转换日期格式、特征工程和缺失值处理(采用随机填充和均值/众数填充策略)。随后构建了包含24个特征的数据集,使用LabelEncoder处理类别变量,并通过热力图和统计图表进行数据分析。分析发现今日降雨对明日降雨概率的影响约为46-53%。最终构建的特征矩阵将用于后续的深度学习模型训练,目标是预测次日是否降雨。完整代码和可视化结果展示了数据科学项目的典型工作流程。

2025-06-26 14:29:08 317

原创 第5天:LSTM预测火灾温度

本文介绍了使用LSTM模型预测火灾温度的深度学习实践。主要步骤包括:1) 环境配置(Python 3.10/PyCharm/PyTorch);2) 数据预处理,采用MinMaxScaler归一化和滑动窗口划分数据集;3) 构建双层LSTM网络,包含320个隐藏单元和全连接输出层;4) 实现训练和测试流程,包含损失计算和优化器更新。实验结果表明,该模型能够有效处理火灾温度预测任务。该方法来自365天深度学习训练营的学习记录,为时间序列预测提供了实践参考。

2025-06-19 19:39:24 219

原创 第4天:RNN应用(心脏病预测)

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-06-06 16:00:31 457

原创 第2天:认识LSTM

本文介绍了LSTM(长短期记忆网络)的核心原理与实现。LSTM通过遗忘门、输入门和输出门三个关键组件有效解决了传统RNN的梯度消失问题,能够处理长序列数据。文章详细解析了LSTM的门控机制和工作流程,并提供了基于PyTorch的LSTM网络实现代码,包括参数设置和前向传播过程。最后列举了LSTM在自然语言处理、时间序列预测等领域的典型应用。该内容来自365天深度学习训练营的学习记录,使用Python 3.10和PyCharm环境开发。

2025-06-05 12:43:09 1060

原创 第1天:认识RNN及RNN初步实验(预测下一个数字)

循环神经网络(RNN)是一种专门处理序列数据的神经网络,其核心特点是具有"记忆"功能,能够保留历史信息用于当前计算。RNN通过循环连接和共享权重机制,有效处理自然语言、时间序列等数据。相较于传统前馈神经网络,RNN能捕捉序列的时序特征和上下文依赖关系。然而标准RNN存在梯度消失和长程依赖问题,因此发展出LSTM和GRU等改进结构。本文还通过Python代码展示了RNN的简单实现,包括数据准备、模型定义和训练过程。RNN及其变体在机器翻译、语音识别等序列任务中具有广泛应用。

2025-06-02 11:27:52 1127

原创 第J9周:Inception v3算法实战与解析

本文介绍了基于Inception V3模型的天气识别实现,属于365天深度学习训练营的学习项目。Inception V3是Google提出的高效CNN架构,通过卷积分解、并行模块和批归一化等技术优化计算效率和精度。文章详细解析了Inception V3的核心创新点,包括模块化设计、非对称卷积分解、辅助分类器等,并提供了使用PyTorch实现的具体代码框架,包含三种Inception模块的定义。该项目目标是利用该模型对天气图像进行分类识别,展示了深度学习在计算机视觉领域的实际应用。

2025-05-28 12:07:18 906

原创 第J8周:Inception v1算法实战与解析

文章主要介绍了1×1卷积运算的原理及其在Inception v1模型中的应用,并展示了如何利用该模型进行猴痘病识别。1×1卷积通过降低通道数来减少计算量,同时保持空间维度不变,适用于特征重组和模型压缩。文章详细解释了1×1卷积的数学原理,并通过代码实现了Inception v1模型,包括其多个分支结构和卷积层的组合。最终,模型通过全连接层进行分类,适用于图像识别任务。

2025-05-21 03:19:37 988

原创 第J7周:ResNeXt解析

本文是365天深度学习训练营中的学习记录博客,作者为K同学。文章详细介绍了如何使用Python 3.10和TensorFlow框架实现深度学习模型,特别是ResNeXt残差网络的构建。具体步骤包括环境配置、GPU内存设置、中文字体支持、分组卷积块的实现以及ResNeXt残差块的构建。代码中使用了TensorFlow的Keras API,涵盖了卷积层、批归一化、激活函数、残差连接等关键操作。通过堆叠多个残差块,构建了一个完整的深度学习模型,并提供了详细的代码实现和注释。

2025-05-09 13:51:07 596

原创 第J6周:ResNeXt-50实战解析(猴痘病识别)

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-05-01 13:26:57 379

原创 第J5周:DenseNet+SE-Net实战

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-04-24 22:12:02 370

原创 第J4周:ResNet与DenseNet结合探索

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-04-18 15:04:05 331

原创 第J3-1周:DenseNet算法 实现乳腺癌识别(含真实图片预测)

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-04-03 15:32:19 369

原创 第J3周:DenseNet121算法实现01(Pytorch版)

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-03-20 20:48:01 486

原创 第J2周:ResNet50V2算法实现02(Tensorflow优化版)

使用tensorflow实现ResNetV50V2的网络结构。本次根据第一层的细节手动硬编码,没有任何的优化,只为了更好的理解细节。是根据网络结构一行一行写出来的。

2025-03-17 12:31:57 405

原创 第J2周:ResNet50V2算法实现01(Tensorflow硬编码版)

使用tensorflow实现ResNetV50V2的网络结构。本次根据第一层的细节手动硬编码,没有任何的优化,只为了更好的理解细节。结果不是很理想,网络结构应该还有瑕疵。后续优化代码解决拟合问题。

2025-03-12 23:04:28 495

原创 第J1周:ResNet50算法(Tensorflow版)

【代码】第J1周:ResNet50算法(Tensorflow版)

2025-03-02 12:23:27 370

原创 第P10周-Pytorch实现车牌号识别

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-02-21 12:14:23 429

原创 第P9周-Pytorch实现YOLOv5-Backbone模块

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-02-13 14:58:53 608

原创 第P8周-Pytroch下YOLOv5-C3模块实现

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-02-13 14:08:53 431

原创 第P7周-Pytorch实现马铃薯病害识别(VGG16复现)

马铃薯病害数据集,该数据集包含表现出各种疾病的马铃薯植物的高分辨率图像,包括和。它旨在帮助开发和测试图像识别模型,以实现准确的疾病检测和分类,从而促进农业诊断的进步。语言环境编 译 器:PyCharm框 架:Pytorch。

2025-01-26 12:43:57 1673 2

原创 第P6周-Pytorch实现好莱坞明星识别(VGG16)

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-01-16 22:43:06 276

原创 第P5周-Pytorch实现运动鞋品牌识别

本次学习对于构建CNN网络中的 nn.BatchNorm2d()做了初步的了解,nn.BatchNorm2d()进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定,BatchNorm2d()函数数学原理如下:BatchNorm2d()内部的参数如下:1.num_features:一般输入参数为batch_sizeheight*width,即为其中特征的数量2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5。

2025-01-08 18:36:00 416

原创 第P4周-Pytorch实现猴痘病识别

语言环境编 译 器:PyCharm框 架:Pytorch。

2025-01-01 12:29:28 379

原创 第T4周:TensorFlow实现猴痘识别(Tensorboard的使用)

1、学习tensorboard的使用。

2024-12-27 12:47:40 464

原创 第P3周:Pytorch实现天气识别

语言环境:Python 3.10编 译 器: PyCharm框 架: Pytorch 2.5.12. 模型代码3. 预测真实图片:pred.py准确率80%.下载一个大数据集训练一下,数据如下:

2024-12-17 17:27:33 474

原创 第P2周:Pytorch实现CIFAR10彩色图片识别

batch_size=16,epochs=50:有第20轮左右的时候,验证集的确认性基本就没有再提高了。比较漂亮了,再调整batch_size=16和epochs=20,提高了近6个百分点。输出:CUDA is available, will use GPU。可以看到训练集和测试集的差距有点大,不太理想。

2024-12-13 00:17:36 700 2

原创 第P1周:Pytorch实现mnist手写数字识别

# 第一步:设置硬件设备,有GPU就使用GPU,没有就使用GPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device)

2024-12-06 14:24:31 1457

原创 第T9周:Tensorflow实现猫狗识别(2)

对于 batch的大小,如何来界定?

2024-11-28 10:15:28 465 1

原创 第T8周:Tensorflow实现猫狗识别(1)

# 归一化处理 train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE) val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE) # cache() ----将数据集缓存到内存当中 加速运行 # shuffle() ----打乱数据 # prefetch() ----预取数据,加速运行 train_ds = train

2024-11-19 10:32:10 754

原创 第T7周:Tensorflow实现咖啡豆识别

VGG-16的网络 有13个卷积层(被5个max-pooling层分割)和3个全连接层(FC),所有卷积层过滤器的大小都是3X3,步长为1,进行padding。5个max-pooling层分别在第2、4、7、10,13卷积层后面。每次进行池化(max-pooling)后,特征图的长宽都缩小一半,但是channel都翻倍了,一直到512。最后三个全连接层大小分别是4096,4096, 1000,我们使用的是咖啡豆识别,根据数据集的类别数量修改最后的分类数量(即从1000改成len(class_names))

2024-11-15 12:55:27 595

原创 第T6周:Tensorflow实现好莱坞明星识别

实际预测会发现结果有很大概率会出错的。其次看模型评估,其实训练的结果是比较差的, val_accuracy最好只有40%左右。如何提高准确率,还需要研究,后续出实践总结。

2024-11-01 18:23:41 303

原创 第T5周:Tensorflow实现运动鞋品牌识别

tf.keras.layers.Dropout( rate, noise_shape=None, seed=None, **kwargs** )使用是防止过拟合,提高模型的泛化能力。过拟合:模型在训练数据中表现优秀,但在测试数据或者新数据中表现糟糕的情况。泛化:就是指模型对于未见过的数据上的表现能力参数:**rate**: 0-1之间的小数,让神经元以一定的概率rate停止工作,提高模型的活化能力。**noise_shape**:这是一个1维整数张量,表示将与输入进行乘法运算的二值dropout

2024-10-19 17:30:53 579

原创 第T4周:TensorFlow实现猴痘识别

1. 数据集的格式可以有多种,可以是numpy数组,文本数据,CSV数据,文件数据等;2. 数据集加速配置,如何更好的利用CPU时间3. 保存模型的要素,结构、权重、配置。仅保存权重并不是模型本身。

2024-10-12 11:30:00 1103

原创 02:图像的基本操作

图像的基本操作。https://docs.opencv.org/4.10.0/dc/d4d/tutorial_py_table_of_contents_gui.html

2024-10-08 16:26:05 174

原创 第T3周:TensorFlow构建CNN网络模型实现天气识别

1.如何检测GPU并使用GPU进行大模型训练与预测2.与之前不一样的数据集的加载与处理方式3.不同的损失函数,池化层函数,学习率和准确率之间有什么关系?需要继续了解4.怎么解决过拟合的问题呢,后续学习研究。5.学习数据增加的方式方法6.每次模型训练完,进行真实图片的预测,应该模型能够保存后直接调用才对,不可能每次使用都需要重新训练一遍。学习模型的保存与加载使用。

2024-10-05 12:30:00 1092

原创 第T2周:TensorFlow实现彩色图片分类(CIFAR10数据集),并实现自己的真实图片分类

1. 熟悉各个模型搭建、训练到预测的流程2. 了解神经网络模型(黑盒子)的细节3. 并不是每次都能预测正确,对于真实图片的预处理,要怎么样提升准确性,后续研究。4. 并不是把epochs提高,准确性就提高,继续研究。

2024-09-28 11:00:00 666

原创 第L4周:机器学习-KNN总结-分类

解释一下:X_pred.shape[0] 就是结果总数30. X_pred.shape的结果是(30, 1),那么shpae[0]就是30.可以看到,30个特征值预测了30个结果。把数据集做切分,按8:2比例切,80%用来训练,20%用来预测。第1个:Sepal.Length(花萼长度),单位是cm。第3个:Petal.Length(花瓣长度),单位是cm。第4个:Petal.Width(花瓣宽度),单位是cm;第2个:Sepal.Width(花萼宽度),单位是cm。标签数据中的0,1,2又代表什么呢?

2024-09-24 10:29:11 689

原创 第T1周:Tensorflow实现mnist手写数字识别

为啥要调整图片格式呢,导入数据的时候,图片的形状是这样的(60000, 28,28)意思是有6000张28X28像素的图片,现在要调整成(60000, 28, 28, 1)的形状,为啥要调整形状?因为神经网络使用的数量(图像表)它的形状应该是(样本数、宽、高、通道数),对应到(60000, 28, 28)就是样本数60000张图片,宽28,高28都有了,差一个通道数。如果(60000,28, 28)中的60000是指数量的话,剩下的28 * 28显然。我的机器明明有显卡,但是显示0,不管了,后面再研究。

2024-09-16 12:27:10 1215

补充:关于802.1X身份验证中CA证书的配置

关于802.1X身份验证中CA证书的配置电子文档

2007-10-18

子网掩码,反掩码计算器

子网计算工具集有很多计算工具在里面。包括子网掩码计算,反掩码计算。相当的方便。当然,我建议您在使用工具前自己要掌握是如何计算这些东西的。

2009-07-03

IP子网计算工具

很不多的工具.在子网划分时,可以省去你很多麻烦.不过建议,还是要学会子网划分方法.工具毕竟只是工具.呵呵.

2007-11-23

[数据结构算法——Visual.C.6.0程序集].侯识忠.清晰版

[数据结构算法——Visual.C.6.0程序集].侯识忠.清晰版

2010-08-20

IP Helper

IP切换工具,在不同的IP间切换,很方便.

2007-11-27

Windows Live Installer

Microsoft Windows Live安装包,包括:<br>1.windows Live Messenger(MSN)<br>2.windows Live Mail(个人感觉挺好用的工具,最大的好处是能 收HOTMAIL邮件)<br>3.windows Live Writer(用于发布博客内容,很方便)<br>4.windows Live 照片库(照片管理器,这个感觉一般)

2007-11-16

nbtscan.exe

一个获取局域网IP,计算机名和MAC的小工具

2007-10-11

飞鸽传书IPMSG

局域网传输数据的小工具。很好用。

2007-11-08

超级好用的查找文件工具

查找文件很快.如果找不到文件,就用它吧.

2008-01-18

防止ARP欺骗

H3C交换机设置如何防止ARP攻击

2007-10-11

Secpath典型配置实例之安全

Secpath典型配置实例之安全---H3C官方总结的资料。涉及Secpath方面的配置案例。对于新手来说,绝对是好资料!

2009-07-03

卸载诺顿的小工具

卸载诺顿的小工具,诺顿卸载不了,就用这个吧.

2007-10-23

ccsetup2.03

非常好用的垃圾文件清理软件,免费.本人试用.效果很好.

2007-12-04

BOINC.EXE

鼎鼎大名的伯克利大学发布的网格分布式计算机的客户端应用程序,下载安装后,你可以加入伯克利大学的许多项目,贡献自己的计算机资料,让全世界的电脑一起协同工作.<br>项目有:寻找地外文明等等

2007-10-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除