10、路由算法:全对最短路径问题的多种解决方案

路由算法:全对最短路径问题的多种解决方案

在网络通信中,路由算法起着至关重要的作用,它决定了数据包如何从源节点传输到目标节点。本文将深入探讨全对最短路径问题的多种算法,包括Floyd - Warshall算法、Toueg算法以及Merlin - Segall和Chandy - Misra算法。

1. 全对最短路径问题概述

全对最短路径问题旨在计算图中任意两个节点之间的最短路径长度。Toueg提出的分布式算法基于集中式的Floyd - Warshall算法,我们将逐步介绍这些算法的原理和实现。

2. Floyd - Warshall算法

Floyd - Warshall算法用于解决全对最短路径问题。给定一个加权图 $G = (V, E)$,边 $uv$ 的权重为 $W_{uv}$,假设图中不存在总权重为负的环。

  • 8 - 路径的概念 :8 - 路径是指所有中间节点都属于 $V$ 的子集 $S$ 的路径。$S$ - 距离 $d_S(u, v)$ 是从 $u$ 到 $v$ 的所有 $S$ - 路径中的最低权重。
  • 算法步骤
    1. 初始化:$S = \varnothing$,对于所有的 $u$ 和 $v$,如果 $u = v$,则 $D[u, v] = 0$;如果 $uv \in E$,则 $D[u, v] = W_{uv}$;否则 $D[u, v] = \infty$。
    2. 迭代:当 $S \neq V$ 时,选择一个节点 $w \in V \setminus S$,对于所有的 $
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值