路由算法:全对最短路径问题的多种解决方案
在网络通信中,路由算法起着至关重要的作用,它决定了数据包如何从源节点传输到目标节点。本文将深入探讨全对最短路径问题的多种算法,包括Floyd - Warshall算法、Toueg算法以及Merlin - Segall和Chandy - Misra算法。
1. 全对最短路径问题概述
全对最短路径问题旨在计算图中任意两个节点之间的最短路径长度。Toueg提出的分布式算法基于集中式的Floyd - Warshall算法,我们将逐步介绍这些算法的原理和实现。
2. Floyd - Warshall算法
Floyd - Warshall算法用于解决全对最短路径问题。给定一个加权图 $G = (V, E)$,边 $uv$ 的权重为 $W_{uv}$,假设图中不存在总权重为负的环。
- 8 - 路径的概念 :8 - 路径是指所有中间节点都属于 $V$ 的子集 $S$ 的路径。$S$ - 距离 $d_S(u, v)$ 是从 $u$ 到 $v$ 的所有 $S$ - 路径中的最低权重。
- 算法步骤 :
- 初始化:$S = \varnothing$,对于所有的 $u$ 和 $v$,如果 $u = v$,则 $D[u, v] = 0$;如果 $uv \in E$,则 $D[u, v] = W_{uv}$;否则 $D[u, v] = \infty$。
- 迭代:当 $S \neq V$ 时,选择一个节点 $w \in V \setminus S$,对于所有的 $