波与遍历算法详解
在分布式系统中,波算法和遍历算法是非常重要的概念,它们在网络拓扑遍历、选举算法构建等方面有着广泛的应用。本文将深入探讨这些算法的原理、特性以及时间复杂度等方面的内容。
1. 基本概念与相关声明
在深入了解遍历算法之前,我们先来看一些基本的概念和相关声明。
设 $Incp$ 和 $NIncp$ 分别表示在事件 $e$ 执行后的值。有以下两个声明:
- 声明 6.22 :如果存在事件 $e \in Cq$ 且 $e \leq f$,那么 $q \in Inc(f)$。
- 证明 :如同定理 6.12 的证明那样,可以证明 $e \leq f \Rightarrow Inc(e) \subseteq Inc(f)$,并且由于 $e \in Cq \Rightarrow q \in Inc(e)$,所以结论成立。
- 声明 6.23 :如果 $q \in NInc(f)$,那么对于所有的 $r \in Inq$,存在事件 $e \in Cr$ 使得 $e \leq f$。
- 证明 :设 $aq$ 是进程 $q$ 首次执行 $NIncq := NIncq \cup {q}$ 的内部事件。事件 $aq$ 是唯一满足 $q \in NInc(aq)$ 且前面没有其他满足 $q \in NInc(a’)$ 的事件 $a’$ 的事件。所以 $q \in NInc(f) \Rightarrow aq \leq f$。算法意味着对于每个 $r \in Inq$,存在一个在 $aq$ 之前的事件