21、任意网络中的选举与生成树算法解析

任意网络中的选举与生成树算法解析

1. 环形网络选举复杂度

在环形网络中,选举算法的复杂度呈现出一些有趣的特性。对于未知大小的双向环,Bodlaender在1988年证明了选举算法平均情况复杂度的下界为çN . HN 。为了消除双向环中的非确定性,考虑让每个进程同时启动,且每个消息具有相同的传输延迟。当环的大小已知时,Bodlaender在1991年指出,单向环的平均情况复杂度下界为ç N log N ,双向环为(А - f) NH N 。

总结来看,环形网络选举的复杂度几乎不受各种假设的影响。无论环的大小是否已知、是单向还是双向,以及考虑最坏情况还是平均情况复杂度,复杂度均为8(N log N) 。值得注意的是,这里的环是异步的,对于有全局时间的网络,消息复杂度会更低。

由于在去中心化波算法的一次计算中就能选出领导者,所以选举的下界也意味着波算法的下界。任何用于环形网络的去中心化波算法,在平均情况和最坏情况下,至少要交换O(N log N) 条消息。

2. 任意网络选举问题

对于拓扑未知且无邻居信息的任意网络,选举问题的研究更为复杂。下面将证明其消息复杂度下界为O(N log N + lEI) ,证明结合了定理6.6的思想和上一小节的结果。

2.1 复杂度下界定理

任意网络的比较选举算法,其(最坏情况和平均情况)消息复杂度至少为O(IEI + N log N) 。因为任意网络包含环形网络,所以O(N log N) 是一个下界。为了说明lEI 消息也是下界,假设选举算法A在网络G上的一次计算C中交换的消息少于lEI 条。构造一个新网络G’ ,将G的两个副本用一条边连接起来,且这条边不在计算C中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值