匹大校园(图)

本文带您参观匹兹堡大学的标志性建筑,包括曾经的最高建筑学习大教堂,药学院的宏伟楼群,以及设施豪华的游泳馆。文中还介绍了匹大的体育馆和办公环境,展示了这所学府的独特魅力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

曾经是匹兹堡最高的建筑——学习大教堂(翻译成中文感觉有点别扭)  现在也是匹兹堡的地标之一。里面有很多教室,有部分学生在里面上课,也可以在里面自习。

 

2010091005465476.jpg

 

2010091005473064.jpg

 

2010091005475115.jpg

 

豹子应该是匹兹堡大学的类似吉祥物一样的东西,匹大的很多纪念品上面都有这个豹子,应该说豹子就是匹大的象征吧。

2010091005480853.jpg

 

2010091005483257.jpg

 

这个双塔一样的楼也是匹大比较有名的建筑。

 

2010091005485213.jpg

 

2010091005491329.jpg

 

2010091005492934.jpg

 

很豪华的游泳馆。匹大有两个游泳馆,这个是其中之一,据说这个是较大的一个。游泳的人很少,经常一个人一个泳道,人多的时候最多也就是2个人一个泳道。

 

2010091005494539.jpg

 

2010091005500758.jpg

 

2010091005502331.jpg

 

匹大的药学院,楼很宏伟,很大的一个学院。

2010091005504012.jpg

 

匹大比较大的一个体育馆,里面有一个室内的篮球场,还有一个很大的健身中心,有各种健身器材。

2010091005510222.jpg

 

我的办公室。最里面的是我的位置。目前里面只有3个人(包括我),应该算是空间还很大,这个办公室标配是5个人。

2010091005511827.jpg

 

我的位置的近景。

 

2010091005513223.jpg

转载于:https://www.cnblogs.com/Gavin_Liu/archive/2010/09/10/1822911.html

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值