贪心算法 田忌赛马问题

本文深入探讨了田忌赛马问题的贪心算法解决方案,详细解释了如何通过比较双方马匹的速度来制定最优策略,以实现最大化胜利次数的目标。文章提供了具体的算法步骤,并附带了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贪心算法 田忌赛马问题

这个题目贪心的本质在于:*田忌只在有把握赢的情况下拿出快马和王拼,否则用最慢的马比掉王的快马最大程度削弱王的战斗力

  • 贪心策略:
    1,如果田忌的最快马快于齐王的最快马,则两者比。
    (因为若是田忌的别的马很可能就赢不了了,所以两者比)
    2,如果田忌的最快马慢于齐王的最快马,则用田忌的最慢马和齐王的最快马比。
    (由于所有的马都赢不了齐王的最快马,所以用损失最小的,拿最慢的和他比)
    3,若相等,则比较田忌的最慢马和齐王的最慢马
    • 若田忌最慢马快于齐王最慢马,两者比。
      (田忌的最慢马既然能赢一个就赢,而且齐王的最慢马肯定也得有个和他比,所以选最小的比他快得。)
    • 其他,则拿田忌的最慢马和齐王的最快马比(注意两马战力相等的情况,不能算田忌输)。
      (反正所有的马都比田忌的最慢马快了,所以这匹马必输,选贡献最大的,干掉齐王的最快马)
#include <stdio.h>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cctype>
#include <string>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <ctime>
#include <vector>
#include <fstream>
#include <list>
#include <iomanip>
#include <numeric>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf = 0x3f3f3f3f;
const int N=1000+5;
int a[N],b[N];
bool cmp(int x,int y){
    return x>y;
}
int main() 
{
    int n;
    while(cin>>n&&n){
        for(int i=0;i<n;i++){
            cin>>a[i];
        }
        for(int i=0;i<n;i++){
            cin>>b[i];
        }
        sort(a,a+n,cmp);
        sort(b,b+n,cmp);
        int si=0,sj=si;
        int ei=n-1,ej=ei;
        int cnt=0;
        while(n--){
            if(a[si]>b[sj]){
                si++;
                sj++;
                cnt++;
            }else if(a[si]==b[sj]){
                if(a[ei]>b[ej]){
                    cnt++;
                    ei--;
                    ej--;
                }else if(a[ei]<b[sj]){
                    cnt--;
                    ei--;
                    sj++;
                }
            }else{
                ei--;
                sj++;
                cnt--;
            }
        }
        cout<<cnt*200<<endl;
    }
    return 0;
}


转载于:https://www.cnblogs.com/Janspiry/p/10809438.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值