Red and Black POJ - 1979

本文深入解析了POJ-1979红黑瓷砖迷宫问题,介绍了一个站在黑色瓷砖上的角色如何仅通过黑色瓷砖进行移动,使用深度优先搜索(DFS)算法来计算可到达的黑色瓷砖总数。文章提供了详细的C++代码实现,展示了如何处理边界条件和避免重复访问已遍历的瓷砖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Red and Black POJ - 1979

There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can’t move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.

题目大意说的是给你一个初始点@(算作黑色),可以往四个方向走,只能走*(黑色),不能走#(红色),问你最后可以可以走的黑色的总和

联通块问题:

我们只要从输入的时候记下起始点的位置,然后模拟,往四个方向走,#可以不走了,是*就继续走,递归返回步数
处理一下细节问题,把走过的格子标记一下,不能走回头路,最后递归返回的就是最后的总数
同时注意是否越界

代码

#include <stdio.h>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cctype>
#include <string>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <ctime>
#include <vector>
#include <fstream>
#include <list>
#include <iomanip>
#include <numeric>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define pi acos(-1)
const int inf = 0x3f3f3f3f;
int dir[4][2]={{0,1},{0,-1},{-1,0},{1,0}};
char s[25][25];
int vis[25][25];
int w,h;
int sx,sy;
int DFS(int i,int j){
	int cnt=1;
	vis[i][j]=1;
	for(int k=0;k<4;k++){
		int x=i+dir[k][0];
		int y=j+dir[k][1];
		if(vis[x][y]||s[x][y]=='#'){
			continue;
		}
		if(x<h&&x>=0&&y>=0&&y<w){
			cnt+=DFS(x,y);
		}
	}
	return cnt;
}
int main() 
{
	while(~scanf("%d%d",&w,&h)&&w&&h){
		sx=-1,sy=-1;
		memset(vis,0,sizeof(vis));
		for(int i=0;i<h;i++){
			scanf("%s",s[i]);
			if(sx==-1){
				for(int j=0;j<w;j++){
					if(s[i][j]=='@'){
						sx=i;
						sy=j;
					}
				}
			}
		}
		printf("%d\n",DFS(sx,sy)); 
	}
    return 0;
}

转载于:https://www.cnblogs.com/Janspiry/p/10809434.html

内容概要:本文档详细介绍了基于弹性架构搜索(Elastic Architecture Search, EAS)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在自动化优化多变量时间序列预测模型结构,提升预测精度与鲁棒性,降低计算资源消耗,实现模型轻量化。通过MATLAB实现,项目采用Transformer编码器的多头自注意力机制,结合EAS的弹性权重共享和分阶段搜索策略,解决了高维多变量时间序列的复杂依赖建模、架构搜索计算资源需求高、模型过拟合、多步预测误差积累、数据异构性与缺失值处理、复杂模型训练收敛等挑战。最终,项目构建了一个高度模块化和可扩展的系统设计,适用于智能制造、能源管理、智慧交通等多个工业场景。 适合人群:具备一定编程基础,对时间序列预测、深度学习及MATLAB有一定了解的研发人员和研究人员。 使用场景及目标:①自动化优化多变量时间序列预测模型结构,提升预测精度与鲁棒性;②降低计算资源消耗,实现模型轻量化;③实现高度模块化与可扩展的系统设计,促进人工智能在工业领域的深度应用;④提供科研与教学的典范案例与工具,探索深度学习架构搜索在时序预测的前沿技术;⑤促进多变量时序数据融合与异质信息处理能力,推动MATLAB深度学习工具箱的应用与扩展。 其他说明:项目不仅聚焦于模型性能提升,更注重计算资源节约和应用落地的可行性。借助弹性架构搜索自动化调参,减少人工经验依赖,加快模型迭代速度,降低开发门槛。结合Transformer编码器的表达能力,显著改善多变量时间序列预测中的长期依赖捕捉和异质数据融合问题,为各类时间序列分析任务提供一种全新的解决方案。项目通过详细的代码实现和注释,帮助用户理解Transformer机制与弹性架构搜索如何协同工作,实现多变量时间序列预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值