题解 P2144 【[FJOI2007]轮状病毒】

本文介绍了一道FJOI2007竞赛题轮状病毒要求计算生成树数量。通过应用矩阵树定理,使用Python实现高精度计算,仅用30行代码便解决了问题。文章提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Solution [FJOI2007]轮状病毒

题目大意:给定一张图,求生成树数量

分析:矩阵树定理裸题,唯一恶心人的地方就是要写高精度

但是作为一个Python爱好者(其实就是懒),我们怎能就此束手就擒,乖乖按照毒瘤出题人的意愿写高精?Python 30行解决战斗

Life is short,I use Python

n = int(input())
maxn = 128
deg = [[0 for i in range(maxn)] for j in range(maxn)]
G = [[0 for i in range(maxn)] for j in range(maxn)]
lap = [[0 for i in range(maxn)] for j in range(maxn)]//列表生成式生成二维数组
def addedge(x,y):
    G[x][y] += 1
    deg[y][y] += 1
def gauss(idx)://高斯消元求解
    res = 1
    for i in range(1,idx + 1):
        for j in range(i + 1,idx + 1):
            while lap[j][i] != 0:
                r = lap[i][i] // lap[j][i]
                res *= -1
                for k in range(i,idx + 1):
                    lap[i][k] -= r * lap[j][k]
                    lap[i][k],lap[j][k] = lap[j][k],lap[i][k]
        res *= lap[i][i]
    return res
for i in range(1,n):
    addedge(i,i + 1),addedge(i + 1,i)
addedge(n,1),addedge(1,n)
for i in range(1,n + 1):
    addedge(i,n + 1),addedge(n + 1,i)
n += 1
for i in range(1,n + 1):
    for j in range(1,n + 1):
        lap[i][j] = deg[i][j] - G[i][j]
print(gauss(n - 1))

转载于:https://www.cnblogs.com/colazcy/p/11515145.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值