深度学习架构中的矩阵运算与伪逆方法
1. 矩阵逆的近似计算
在矩阵运算中,我们常常需要计算矩阵的逆。对于矩阵 $(A_1 + A_2)^{-1}$,有两种方法可以进行近似计算。
1.1 收缩映射法
考虑映射 $f : M_{n×n} → M_{n×n}$,其中 $f(M) = A_2^{-1} - MA_1A_2^{-1}$。通过计算可以得到 $|f(M) - f(M’)| = |(M’ - M)A_1A_2^{-1}| \leq |M’ - M||A_1A_2^{-1}| < \lambda|M - M’|$,这表明 $f$ 是 $M_{n×n}$ 到自身的一个收缩映射。
由于 $M_{n×n}$ 空间是完备的(因为任何矩阵都与一个线性算子相关联,而 $\mathbb{R}^n$ 上的线性算子空间是完备的),根据不动点定理,映射 $f$ 有一个唯一的不动点 $M^ $,即 $f(M^ ) = M^ $。从相关推导可知,$M^ = (A_1 + A_2)^{-1}$。
我们可以通过矩阵序列 $(M_n)$ 来近似这个逆,其中 $M_{n + 1} = f(M_n)$,$M_0 = O$。误差可以通过 $|M_n - M^*| < \frac{\lambda^n}{1 - \lambda}|M_1 - M_0| = \frac{\lambda^n}{(1 - \lambda)}|A_2^{-1}|$ 来估计。
1.2 级数展开法
另一种近似 $(A_1 + A_2)^{-1}$ 的方法是将其展开为级数。根据相关命题,$(A_1 + A_2)