58、深度学习架构中的矩阵运算与伪逆方法

深度学习架构中的矩阵运算与伪逆方法

1. 矩阵逆的近似计算

在矩阵运算中,我们常常需要计算矩阵的逆。对于矩阵 $(A_1 + A_2)^{-1}$,有两种方法可以进行近似计算。

1.1 收缩映射法

考虑映射 $f : M_{n×n} → M_{n×n}$,其中 $f(M) = A_2^{-1} - MA_1A_2^{-1}$。通过计算可以得到 $|f(M) - f(M’)| = |(M’ - M)A_1A_2^{-1}| \leq |M’ - M||A_1A_2^{-1}| < \lambda|M - M’|$,这表明 $f$ 是 $M_{n×n}$ 到自身的一个收缩映射。

由于 $M_{n×n}$ 空间是完备的(因为任何矩阵都与一个线性算子相关联,而 $\mathbb{R}^n$ 上的线性算子空间是完备的),根据不动点定理,映射 $f$ 有一个唯一的不动点 $M^ $,即 $f(M^ ) = M^ $。从相关推导可知,$M^ = (A_1 + A_2)^{-1}$。

我们可以通过矩阵序列 $(M_n)$ 来近似这个逆,其中 $M_{n + 1} = f(M_n)$,$M_0 = O$。误差可以通过 $|M_n - M^*| < \frac{\lambda^n}{1 - \lambda}|M_1 - M_0| = \frac{\lambda^n}{(1 - \lambda)}|A_2^{-1}|$ 来估计。

1.2 级数展开法

另一种近似 $(A_1 + A_2)^{-1}$ 的方法是将其展开为级数。根据相关命题,$(A_1 + A_2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值