
机器学习
文章平均质量分 88
以通俗易懂的概念讲述机器学习,并结合实例代码,进行实操,使得读者更加清晰明白,让读者快速上手机器学习。
胡萝卜不甜
一位在机器学习、计算机视觉、人工智能领域的优质创作者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
“人工智能”或“深度学习”的4个应用案例(Python编程语言)
上述代码体现了 Python 在前沿技术领域的强大应用能力,涵盖图像识别、自然语言处理、时间序列预测以及强化学习等多个方向。借助 TensorFlow、Keras 等高效工具,开发者能够便捷地搭建和训练各类深度学习模型,有效应对诸多实际难题。这些案例既彰显了 Python 的灵活与易用,也凸显了相关技术的强大效能。原创 2025-02-08 11:26:56 · 763 阅读 · 0 评论 -
DeepSeek与其他大模型性能参数详细对比
DeepSeek 的混合专家架构和强化学习技术使其在计算效率和资源消耗方面表现出色,适合资源有限的环境。中文语境表现:DeepSeek 在中文语言理解与生成方面表现优于 GPT-4,生成的文本更符合中文表达习惯。推理能力:DeepSeek 在数学和逻辑推理任务中表现出色,超越了 GPT-4。成本效益:DeepSeek 的训练成本远低于 GPT-4,使其在商业应用中更具性价比。多模态能力:在多模态任务中,DeepSeek 的表现略逊于 Google Gemini。生成速度。原创 2025-02-08 11:09:26 · 4745 阅读 · 0 评论 -
DeepSeek如何帮助我们提升代码效率?
代码生成:开发者只需提供清晰的功能描述,DeepSeek 就能快速生成代码框架,涵盖类定义、函数声明等基本结构,为后续开发节省时间。例如,开发者想要实现一个简单的用户管理系统,只需描述需求,DeepSeek 就能生成包含用户信息存储、增删改查等基础功能的代码框架。:对于复杂的算法,如排序算法、搜索算法、机器学习算法等,DeepSeek 能根据算法原理和需求生成相应的代码实现。原创 2025-02-07 23:32:24 · 773 阅读 · 0 评论 -
DeepSeek可以做什么(一次性讲清楚)
DeepSeek在语言模型领域展现了强大的能力,能够处理多种语言任务,为用户提供高效、准确的解决方案。:DeepSeek能够根据用户输入的提示生成高质量的文本内容,涵盖新闻报道、故事创作、文案撰写等多种类型。其生成的文本在语法正确性、逻辑连贯性以及内容丰富度方面表现出色。例如,在新闻报道生成任务中,DeepSeek能够根据提供的主题和背景信息,快速生成结构完整、信息准确的新闻稿件,其生成的新闻稿件在语言表达和内容组织上与专业记者撰写的稿件相当,能够满足媒体行业的快速内容生产需求。原创 2025-02-07 20:01:25 · 10386 阅读 · 0 评论 -
爆火的DeepSeek到底是什么?(一次性讲解清楚)
DeepSeek模型是由DeepSeek团队开发的开源大规模语言模型系列,旨在探索通用人工智能(AGI)的奥秘,并以长期主义视角回答人工智能领域的关键问题。其开发背景是当前人工智能领域对于更高效、更强大语言模型的需求,以及对开源模型在性能和成本效益上与闭源模型竞争的探索。DeepSeek团队的目标是通过技术创新,降低模型的训练和推理成本,同时提升模型性能,推动人工智能技术的普惠化和广泛应用。原创 2025-02-06 15:49:01 · 18479 阅读 · 0 评论 -
通过Python编程语言实现“机器学习”小项目教程案例
机器学习通过从大量数据中提取模式和规律,使计算机能够对新数据做出准确的预测或决策。例如,在图像识别中,机器学习模型可以从大量的图像数据中学习到不同物体的特征,从而能够识别出新的图像中的物体。原创 2025-01-23 18:03:44 · 1987 阅读 · 0 评论 -
深度学习应用
深度学习作为机器学习的一个分支,已经成为人工智能领域的核心技术之一。它通过模拟人脑的神经网络结构,实现了对复杂数据模式的识别和预测。从定义与发展、核心技术与算法、应用实例、工具与框架,到面临的挑战与未来,深度学习已经展示了其在多个领域的强大能力和潜力。原创 2024-10-06 17:53:04 · 2577 阅读 · 0 评论 -
懒洋洋浅谈--机器学习框架
今天主要给大家分享机器学习框架以及主要流程和需要的东西。里面放置了新手链接。感谢大家的点赞和关注。原创 2024-10-05 21:55:01 · 1486 阅读 · 0 评论 -
机器学习和深度学习的区别
深度学习是机器学习的一个子集,它基于人工神经网络的概念,特别是那些具有多个非线性变换的层(即深度)。深度学习模型能够自动从原始数据中提取复杂的特征,而无需人为干预。层次结构:深度学习模型由多个层次的神经元组成,每一层都对输入数据进行转换和抽象,从而捕捉数据的复杂特征。自动特征提取:与传统机器学习方法相比,深度学习能够自动从原始数据中学习特征,减少了对人工特征工程的依赖。计算密集型:深度学习模型通常需要大量的计算资源,包括高性能的GPU,以训练大规模的数据集和复杂的模型结构。代表性模型。原创 2024-09-26 23:33:22 · 6596 阅读 · 0 评论 -
喜羊羊让你Pyecharts快速上手(实例+代码)
今天羊羊给大家分享了pyecharts快速上手,谢谢大家的关注和点赞。原创 2024-08-26 20:50:08 · 902 阅读 · 0 评论 -
机器学习(前六关大总结)生动讲解+代码实例
hello,各位羊粉,今天主要给大家总结了前阵子的机器学习知识点,感谢大家的关注和点赞。原创 2024-08-25 21:01:41 · 1238 阅读 · 0 评论 -
Transformer模型中的Position Embedding实现
Transformer模型中的Position Embedding实现原创 2024-08-21 19:19:40 · 909 阅读 · 0 评论 -
机器学习(第六关--文本特征抽取)
无私分享机器学习相关知识,这章节分享关键词的概念,以及另一种文本特征提取方法。原创 2024-08-20 19:50:56 · 976 阅读 · 0 评论 -
勇闯机器学习(第五关--中文文本特征提取)
无私分享机器学习知识点,今天的章节是中文数据特征提取。助力大家更加深刻的理解机器学习领域。原创 2024-08-19 20:36:22 · 960 阅读 · 0 评论 -
勇闯机器学习(第四关-文本特征提取)
无私分享机器学习相关知识,这章节讲述的是文本特征提取。原创 2024-08-18 17:41:58 · 880 阅读 · 0 评论 -
勇闯机器学习(第三关-特征工程)
无私分享机器学习知识点,这章节主要讲特征工程。原创 2024-08-17 22:56:48 · 1269 阅读 · 0 评论 -
勇闯机器学习(第二关-数据集使用)
无私分享机器学习方面的知识,第二关主讲机器学习的网站(可用的数据集)原创 2024-08-16 16:03:33 · 1532 阅读 · 1 评论 -
误闯机器学习(第一关-概念和流程)
无私分享机器学习方面的知识,质量尚可,请各位捧捧场。原创 2024-08-16 09:53:46 · 885 阅读 · 1 评论