遗传算法实战:5步教你找到函数最大值!(附Python代码)

一、这个算法有点意思!

大家有没有遇到过这样的情况——想找一个复杂函数的最高点,用常规方法试了半天就是找不到?(举个手让我看看🙋)今天要介绍的遗传算法(Genetic Algorithm),就像生物进化一样神奇,能帮我们找到函数的最优解!

先给大家看个例子:假设我们要找函数 f(x) = x² 在 [0,31] 区间的最大值。传统方法可能需要遍历所有整数,但遗传算法只需要几代"进化"就能找到正确答案!(后面会揭晓具体实现)

二、遗传算法的核心四步走

1. 编码:把问题装进DNA里

  • 二进制编码:把x值转成5位二进制(比如15→01111)
  • 重要技巧:编码长度决定精度,这里5位对应32种可能值
  • (新手注意!)编码方案直接影响算法效率

2. 初始种群:随机生成第一代

import random

def create_population(size):
    return [random.randint(0, 31) for _ in range(size)]

population = create_population(10)  # 初始10个个体

3. 选择:优胜劣汰的时刻到了!

  • 轮盘赌选择法:适应度高的个体有更大存活概率
def selection(population):
    fitness = [x**2 for x in population]
    total = sum(fitness)
    return random.choices(population, weights=fitness, k=len(population))

4. 交叉:基因交换产生新生命

  • 单点交叉:随机选个位置交换父母基因
def crossover(parent1, parent2):
    point = random.randint(1,4)
    mask = (0b11111 >> point) << point
    child1 = (parent1 & mask) | (parent2 & ~mask)
    child2 = (parent2 & mask) | (parent1 & ~mask)
    return child1, child2

5. 变异:给进化加点意外

def mutation(child):
    if random.random() < 0.1:  # 10%变异概率
        bit = 1 << random.randint(0,4)
        return child ^ bit
    return child

三、参数调校的三大黄金法则

  1. 种群数量:20-100是常用范围(太小容易早熟,太大计算慢)
  2. 变异概率:0.001-0.1之间(太高会破坏优秀基因)
  3. 停止条件的三种设置方式:
    • 固定迭代次数(比如100代)
    • 连续N代没有改进
    • 达到目标适应度

(实测发现!)对于我们的x²问题,以下参数组合效果最佳:

  • 种群大小:20
  • 交叉概率:0.8
  • 变异概率:0.05
  • 迭代次数:50

四、你可能遇到的三大坑(附解决方案)

1. 早熟收敛(整个种群过早趋同)

  • 对策:增加变异概率,使用精英保留策略

2. 收敛速度慢

  • 对策:采用自适应交叉/变异概率

3. 陷入局部最优

# 解决方法:引入移民策略
def immigration(population, rate=0.1):
    new_blood = [random.randint(0,31) for _ in range(int(len(population)*rate))]
    return population[:-len(new_blood)] + new_blood

五、完整代码大公开

def genetic_algorithm():
    population = create_population(20)
    for _ in range(50):
        # 选择
        selected = selection(population)
        # 交叉
        new_pop = []
        for i in range(0, len(selected), 2):
            p1, p2 = selected[i], selected[i+1]
            c1, c2 = crossover(p1, p2)
            new_pop.extend([mutation(c1), mutation(c2)])
        # 移民
        population = immigration(new_pop)
        # 记录最佳
        best = max(population, key=lambda x: x**2)
    return best

print(f"找到的最大值是:{genetic_algorithm()}")  # 应该输出31!

六、升级你的算法装备

想要更上一层楼?试试这些进阶技巧:

  1. 实数编码:适合连续函数优化
  2. NSGA-II:多目标优化神器
  3. 并行计算:用多核加速进化过程

(个人经验分享)在实际项目中,建议先用简单参数快速测试,找到大致方向后再精细调参。记得保存每代的进化数据,这对分析算法行为超有帮助!

七、总结

通过这个案例,我们发现:

  • 遗传算法特别适合复杂、多峰的函数优化
  • 参数设置需要平衡探索与开发的矛盾
  • 生物进化思想在计算机领域的完美应用

下次遇到棘手的优化问题,不妨试试这个"仿生算法"。说不定它会给你带来意想不到的惊喜!(就像我当年第一次用它优化神经网络参数时的震撼😉)

最后留个思考题:如果把x的范围扩展到[0,1023],需要多少位二进制编码?欢迎在评论区讨论!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值