用python画cdf图和直方图

本文介绍如何使用Python的Numpy、Statsmodels和Matplotlib库来绘制累积分布函数(CDF)图和直方图。通过实例展示了数据的可视化过程,包括数据准备、CDF图的绘制以及直方图的展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用python画cdf图和直方图

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 20 10:13:27 2019
@author: Ding
"""
import numpy as np
import statsmodels.api as sm # recommended import according to the docs
import matplotlib.pyplot as plt
data=[14.27,14.80,12.28,17.09,15.10,12.92,15.56,15.38,
      15.15,13.98,14.90,15.91,14.52,15.63,13.83,13.66,
      13.98,14.47,14.65,14.73,15.18,14.49,14.56,15.03,
      15.40,14.68,13.33,14.41,14.19,15.21,14.75,14.41,
      14.04,13.68,15.31,14.32,13.64,14.77,14.30,14.62,
      14.10,15.47,13.73,13.65,15.02,14.01,14.92,15.47,
      13.75,14.87,15.28,14.43,13.96,14.57,15.49,15.13,
      14.23,14.44,14.57]
#=============绘制cdf图===============
ecdf = sm.distributions.ECDF(data)
#等差数列,用于绘制X轴数据
x = np.linspace(min(data), max(data))
# x轴数据上值对应的累计密度概率
y = ecdf(x)
#绘制阶梯图
plt.step(x, y)
plt.show()
#===============绘制条形图=============
fig,ax0 = plt.subplots(nrows=1,figsize=(6,6))
#第二个参数是柱子宽一些还是窄一些,越大越窄越密
ax0.hist(data,10,density=1,histtype='bar',facecolor='yellowgreen',alpha=0.75)

cdf图
直方图

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值