LSTM正向传播代码

LSTM结构

lstm具体内容参考#继RNN之后-LSTM_rnn和lstm区别-CSDN博客

首先回顾一下LSTM的结构:

正向传播公式

还有LSTM正向传播的公式:

总体的代码如下:

代码

import numpy as np
from torch import sigmoid, softmax


def forward_prop(self,x):
    #序列样本时间长度 例如 abcd a是t=0时刻 b是t=1时刻 c是t=2时刻 d是t=3时刻
    T = len(x)
    #初始化LSTM门控结构各个状态向量
    states = self.init_state(T)
    #对abcd这个序列进行累计求和 所以用for循环遍历abcd时刻
    for t in range(T):
        #前一时刻的隐藏层状态 就是ht-1
        ht_pre = np.array(states["ht"][t-1]).reshape(-1,1)
        xt = np.row_stack((ht_pre,x[t]))
        #遗忘门
        states["ft"][t] = sigmoid(np.dot(self.wf,xt)+self.bf)
        #输入门
        states["it"][t] = sigmoid(np.dot(self.wi,xt)+self.bi)
        states["at"][t] = np.tanh(np.dot(self.wa,xt)+self.ba)
        #更新细胞状态 ct = ft * ct_pre + it * at
        states["ct"][t] = states["ft"][t] * states["ct"][t-1]+states["it"][t] * states["at"][t]
        #输出门
        states["ot"][t] = sigmoid(np.dot(self.wo,xt)+self.bo)
        states["ht"][t] = states["ot"][t] * np.tanh(states["ct"][t])

        #预测输出
        states["yt"][t] = softmax(np.dot(self.wy,states["ht"][t])+self.by)
    return  states

代码分析

接下来逐行进行分析:

1.确定时间长度

T = len(x):

确定序列样本x的时间长度

  • 计算了输入序列x
### LSTM 基础模型示例代码 #### 使用 PyTorch 实现的基础 LSTM 模型 下面展示了一个简单的基于 PyTorch 的 LSTM 模型实现。该模型接受序列数据作为输入并返回预测输出。 ```python import torch from torch import nn class SimpleLSTM(nn.Module): def __init__(self, input_dim, hidden_dim, layer_dim, output_dim): super(SimpleLSTM, self).__init__() # 隐藏层维度 self.hidden_dim = hidden_dim # LSTM 层数 self.layer_dim = layer_dim # 定义 LSTM 层 self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True) # 全连接层 self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): # 初始化隐藏状态和细胞状态为零向量 h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_() c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) # 取最后一个时间步的输出 out = self.fc(out[:, -1, :]) return out ``` 此段代码定义了一个名为 `SimpleLSTM` 的类,它继承自 `nn.Module` 类。构造函数初始化了必要的属性,并创建了一层或多层 LSTM 单元以及全连接层用于最终分类或回归任务。前馈方法实现了正向传播逻辑,在这里指定了如何处理输入张量并通过网络传递以获得输出[^3]。 对于 MATLAB 中运行 LSTM 模型的情况,可以按照如下方式调用预构建好的函数: ```matlab RunLstm(num_delay_value, cell_number_value, cost_threshold_value); ``` 这里的参数分别代表延迟数量、单元数目及成本阈值,具体数值需依据实际应用场景设定[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值