设计模式-- 观察者模式(坐牢模式)

观察者模式其实和坐牢差不多;被观察者(牢犯人),观察者(监狱长),当牢犯人有啥风吹草动立马通知监狱长,虽然不是很恰当,但是就是这么个意思,自己悟一下😄。

没用设计模式的代码,这样的代码要是把最上面那部分也要符合要求加进来,就要修改代码,不符合宁增不改的原则。也就是想搞个新闻啥的,又得加代码去实现。比如:

上面那是没使用 观察者模式的时候的代码,每次修改都要增加if来写代码,上面的方法实现简单加一下无妨,但是如果很复杂的话,就GG了,下面使用观察者模式实现一下

<?php
/**
 * 观察者模式
 * @author: Mac
 * @date: 2012/02/22
 */


class Paper{ /* 发生事件的变化  */
    private $_observers = array();

    public function register($sub){ /*  允许哪些人观察我的变化。 */
        $this->_observers[] = $sub;
    }


    public function trigger(){  /*  我发生变化了通知哪些观察我的人。*/
        if(!empty($this->_observers)){
            foreach($this->_observers as $observer){
                $observer->update();
            }
        }
    }
}






/**
 * 观察者要实现的接口(如果还有其他观察者,也一样这样实现)
 */
interface Observerable{
    public function update();
}

//这是观察者A
class SubscriberA implements Observerable{
    public function update(){
        echo "Callback\n";
    }
}

//这是观察者B
class SubscriberB implements Observerable{
    public function update(){
        echo "Callback\n";
    }
}

 测试代码

/*  测试    */
//当事件发生变化,那么观察者们就可以对这个变化;各自在这件变化上的处理方案。
$paper = new Paper();
$paper->register(new SubscriberA());
$paper->register(new SubscriberB());
$paper->trigger();

总结:观察者模式的话,当被观察者发生变化时,各个观察者可以对这种变化有自己的处理方案。

实际案例比如:一个新开发的版本项目上线,测试观察者,和程序员观察者等 都对这个线上项目观察着,当线上项目出问题时,测试观察者可能要去复测线上问题,程序员观察者可能要去修复线上的问题。

内容概要:本文档详细介绍了基于弹性架构搜索(Elastic Architecture Search, EAS)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在自动化优化多变量时间序列预测模型结构,提升预测精度与鲁棒性,降低计算资源消耗,实现模型轻量化。通过MATLAB实现,项目采用Transformer编码器的多头自注意力机制,结合EAS的弹性权重共享和分阶段搜索策略,解决了高维多变量时间序列的复杂依赖建模、架构搜索计算资源需求高、模型过拟合、多步预测误差积累、数据异构性与缺失值处理、复杂模型训练收敛等挑战。最终,项目构建了一个高度模块化和可扩展的系统设计,适用于智能制造、能源管理、智慧交通等多个工业场景。 适合人群:具备一定编程基础,对时间序列预测、深度学习及MATLAB有一定了解的研发人员和研究人员。 使用场景及目标:①自动化优化多变量时间序列预测模型结构,提升预测精度与鲁棒性;②降低计算资源消耗,实现模型轻量化;③实现高度模块化与可扩展的系统设计,促进人工智能在工业领域的深度应用;④提供科研与教学的典范案例与工具,探索深度学习架构搜索在时序预测的前沿技术;⑤促进多变量时序数据融合与异质信息处理能力,推动MATLAB深度学习工具箱的应用与扩展。 其他说明:项目不仅聚焦于模型性能提升,更注重计算资源节约和应用落地的可行性。借助弹性架构搜索自动化调参,减少人工经验依赖,加快模型迭代速度,降低开发门槛。结合Transformer编码器的表达能力,显著改善多变量时间序列预测中的长期依赖捕捉和异质数据融合问题,为各类时间序列分析任务提供一种全新的解决方案。项目通过详细的代码实现和注释,帮助用户理解Transformer机制与弹性架构搜索如何协同工作,实现多变量时间序列预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值