Redis 处理读请求

在前文“Redis 接收连接”中,Redis 将接收的客户端连接加入了 epoll 中监听,同时还设置了读事件处理器 connSocketEventHandler

假设现在客户端向 Redis 发来一条 set key value 命令。

事件循环 aeProcessEvents

在事件循环 aeProcessEvents 中会调用 connSocketEventHandler

int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{
    .....
    // aeApiPoll返回所有就绪的读事件
    numevents = aeApiPoll(eventLoop, tvp); // epoll_wait
    .....

    for (j = 0; j < numevents; j++) {
        .....
            
      if (!invert && fe->mask & mask & AE_READABLE) {
            // 调用读事件处理器connSocketEventHandler
            // fe->clientData指向fd地连接对象
            fe->rfileProc(eventLoop,fd,fe->clientData,mask);
            fired++;
            fe = &eventLoop->events[fd]; /* Refresh in case of resize. */
        }
        
        ......
    }
    .....
}

connSocketEventHandler

// el:事件循环对象
// fd:就绪的fd
// clientData:连接对象(不是客户端对象)
// mask:就绪的事件(读写事件)
static void connSocketEventHandler(struct aeEventLoop *el, int fd, void *clientData, int mask)
{
    UNUSED(el);
    UNUSED(fd);
    connection *conn = clientData;
    
    // ------------------------ 第1部分 --------------------------
    // 当Redis作为客户端主动发起TCP连接时(如主从复制中的从节点连接主节点),
    // 会使用非阻塞scoekt调用connect()系统调用请求建立连接。由于socekt非阻塞,所有connect()会立即返回,
    // 如果返回的错误是EINPROGRESS,说明连接正在建立,忽略。
    // 接下来,Redis会将这个socket添加到epoll中监听其写事件,并将写处理器设置为本函数。
    // 当epoll触发其写事件后,会回调本函数,并在这里判断连接是否建立成功。
    // 调用getsockopt(cfd, SOL_SOCKET, SO_ERROR, (void*)(&errno) 检查错误码,
    // 如果errno=0,才是连接建立成功了,否则,就是建立失败了。
    if (conn->state == CONN_STATE_CONNECTING &&
            (mask & AE_WRITABLE) && conn->conn_handler) {

        // 调用getsockopt(cfd, SOL_SOCKET, SO_ERROR, (void*)(&conn_error) 检查错误码
        int conn_error = connGetSocketError(conn);
        // conn_error != 0,发生错误
        if (conn_error) {
            conn->last_errno = conn_error;	// 记录错误号
            conn->state = CONN_STATE_ERROR;	// 设置错误连接状态
        } else {
            // conn_error = 0,连接成功
            conn->state = CONN_STATE_CONNECTED;	// 更新连接状态为已连接
        }
        // 如果连接写处理器为NULL,删除对写文件事件的监听
        // 调用connect()发起连接时,我们监听的就是写事件,并且回调函数设置为本函数,
        // 同时设置了连接处理器conn_handler(如syncWithMaster),但是没有设置连接的写处理器write_handler
        // 因为本次写事件监听仅仅只是想知道连接是否建立成功,不是想发数据,因此没必要设置连接的写处理器。
        if (!conn->write_handler) aeDeleteFileEvent(server.el,conn->fd,AE_WRITABLE);

        // 发起的连接建立成功,调用连接处理器conn_handler执行后续的操作。
        if (!callHandler(conn, conn->conn_handler)) return;
        conn->conn_handler = NULL;
    }

    // ------------------- 第2部分 --------------------
    // 通常情况下,我们先执行可读事件,然后再执行可写事件。这是很有用的,因为有时我们在处理完查询后,
    // 或许能够立即回复该查询的结果。
    // 然而,如果在掩码中设置了 WRITE_BARRIER(写屏障),我们的应用程序就会要求我们采取相反的做法:
    // 绝不在可读事件之后触发可写事件。在这种情况下,我们会颠倒这些事件的调用顺序。
    // 例如,当我们想要在 beforeSleep() 钩子函数中执行一些操作(比如在回复客户端之前,
    // 将文件同步到磁盘的 fsync 操作)时,这种处理方式就很有用。
    int invert = conn->flags & CONN_FLAG_WRITE_BARRIER;

    // 如果发生了写事件且设置了写事件处理器
    int call_write = (mask & AE_WRITABLE) && conn->write_handler;
    // 如果发生了读事件且设置了读事件处理器
    int call_read = (mask & AE_READABLE) && conn->read_handler;

    /* 处理正常的I/O工作流,即先处理读事件在再处理写事件 */
    if (!invert && call_read) {
        // 执行连接读事件处理器,即 
        if (!callHandler(conn, conn->read_handler)) return;
    }
    /* 处理写事件 */
    if (call_write) {
        // 执行连接写事件处理器,即 sendReplyToClient
        if (!callHandler(conn, conn->write_handler)) return;
    }
    /* 如果我们必须反转调用,在可写事件之后立即触发可读事件。 */
    if (invert && call_read) {
        if (!callHandler(conn, conn->read_handler)) return;
    }
}

Redis 6 之前,读文件事件的处理器是 readQueryFromClient;写文件事件的处理器是 sendReplyToClient

从 Redis 6 开始,在事件层之上又引入了连接(层)的概念。事件层的读写文件事件处理器统一为 connSocketEventHandler。而 readQueryFromClientsendReplyToClient 被移到了连接层,作为连接的读和写处理器。在 connSocketEventHandler 中根据读写事件分发给连接层,对于读事件调用连接读处理器 readQueryFromClient,写事件调用连接写处理器 sendReplyToClient。这样实现了连接和事件的分层,分层减少了耦合性,提高了代码的清晰度和可维护性。

这也解释了为什么会在事件循环 aeProcessEvents 中实现了一遍分发逻辑,又在 connSocketEventHandler 中实现了一遍分发逻辑。

事件循环 aeProcessEvents 中的分发逻辑貌似已经没什么用了(maybe),不知道会不会在未来移除。

第 1 部分

当 Redis 作为客户端主动发起 TCP 连接时(如主从复制中的从节点连接主节点),会使用非阻塞 scoekt 调用 connect() 系统调用请求建立连接。由于 socekt 非阻塞,所有 connect() 会立即返回,对于 EINPROGRESS 错误(连接正在建立),我们可以忽略。然后 Redis 会将这个 socket 添加到 epoll 中监听其写事件,并将写处理器设置为 connSocketEventHandler。当 epoll 触发其写事件后,回调 connSocketEventHandler 判断连接是否建立成功。调用 getsockopt(cfd, SOL_SOCKET, SO_ERROR, (void*)(&errno) 检查错误码,如果 errno=0,才是连接建立成功了,否则,就是建立失败了。

示例

我们来看下从节点调用 connectWithMaster() 请求与主节点建立连接,位于 replication.c 中。

// 发起与主节点的连接
int connectWithMaster(void) {
    // 根据配置决定是与主节点建立TLS建立还是TCP连接,
    // 我们只关注TCP连接,connCreateSocket()创建了一个连接对象
    server.repl_transfer_s = server.tls_replication ? connCreateTLS() : connCreateSocket();
    // 发起连接
    if (connConnect(server.repl_transfer_s, server.masterhost, server.masterport,
                NET_FIRST_BIND_ADDR, syncWithMaster) == C_ERR) {
        serverLog(LL_WARNING,"Unable to connect to MASTER: %s",
                connGetLastError(server.repl_transfer_s));
        connClose(server.repl_transfer_s);
        server.repl_transfer_s = NULL;
        return C_ERR;
    }
    .....
}

/* 获取第一个绑定地址,如果没有则返回 NULL,即获取 slave 节点的地址 */
#define NET_FIRST_BIND_ADDR (server.bindaddr_count ? server.bindaddr[0] : NULL)

将创建的连接对象作为第一个参数调用 connConnect(注意:连接回调是 syncWithMaster),位于 connection.h

static inline int connConnect(connection *conn, const char *addr, int port, const char *src_addr,
        ConnectionCallbackFunc connect_handler) {
    return conn->type->connect(conn, addr, port, src_addr, connect_handler);
}

conn->type->connect 实际调用 CT_Socket 的 connSocketConnect 接口实现。connSocketConnect 位于 connection.c

static int connSocketConnect(connection *conn, const char *addr, int port, const char *src_addr,
        ConnectionCallbackFunc connect_handler) {
    // 调用socket()、bind()(可选) 和 connect()
    int fd = anetTcpNonBlockBestEffortBindConnect(NULL,addr,port,src_addr);
    if (fd == -1) { // 失败
        conn->state = CONN_STATE_ERROR;	// 设置错误连接状态
        conn->last_errno = errno;		// 记录错误号
        return C_ERR;
    }
    // 到这里,连接不一定就建立成功了,可能正在建立连接,也可能出错了
    conn->fd = fd;
    conn->state = CONN_STATE_CONNECTING; // 设置连接类型

    conn->conn_handler = connect_handler;
    // 不论当前是建立成功还是失败亦或是正在建立连接,都监听其写事件
    // 连接建立成功或失败都会触发epoll的可写事件
    // 添加到epoll,监听可写事件,事件回调函数connSocketEventHandler
    // 我们在connSocketEventHandler处理连接的成功或失败情况
    aeCreateFileEvent(server.el, conn->fd, AE_WRITABLE,
            conn->type->ae_handler, conn);

    return C_OK;
}

我们来看下 anetTcpNonBlockBestEffortBindConnect 的实现,位于 anet.c

int anetTcpNonBlockBestEffortBindConnect(char *err, const char *addr, int port,
                                         const char *source_addr)
{
    return anetTcpGenericConnect(err,addr,port,source_addr,
            ANET_CONNECT_NONBLOCK|ANET_CONNECT_BE_BINDING);
}

注意:flags 包含ANET_CONNECT_NONBLOCK,以非阻塞 socket 发起连接请求。

ANET_CONNECT_BE_BINDING 是做什么的?

主动发起连接的一方都可以称之为客户端(即,这里的 slave 节点)。

客户端发起连接时,只需要 socket() + connect() 即可,无需调用 bind() 函数。这时内核会根据路由表选择合适的外发网络接口(如多网卡环境),同时分配一个临时端口(范围通常为32768-60999),发起连接。

但如果系统需要客户端使用特定端口(如防火墙策略限制),或需要客户端通过指定网卡通信(如绑定192.168.1.100而非自动选择),当然这些都是假设,或许你的应用就是任性,喜欢用特定的地址和/或端口发起来连接,也没毛病。这时你就需要 bind() 函数手动指定你要绑定的地址和/或端口了。

ANET_CONNECT_BE_BINDING 的作用就是如果 socket() + bind() + connect() 序列失败,就执行 socket() + connect()序列发起连接。

#define ANET_CONNECT_NONE 0
#define ANET_CONNECT_NONBLOCK 1
#define ANET_CONNECT_BE_BINDING 2 /* Best effort binding. */
static int anetTcpGenericConnect(char *err, const char *addr, int port,
                                 const char *source_addr, int flags)
{
    int s = ANET_ERR, rv;
    char portstr[6];  /* strlen("65535") + 1; */
    struct addrinfo hints, *servinfo, *bservinfo, *p, *b;

    snprintf(portstr,sizeof(portstr),"%d",port);
    memset(&hints,0,sizeof(hints));
    hints.ai_family = AF_UNSPEC;		// 支持 IPv4/IPv6
    hints.ai_socktype = SOCK_STREAM;	// TCP 协议

    // IPv4中使用 gethostbyname() 函数完成主机名到地址解析,这个函数仅仅支持 IPv4,
    // 且不允许调用者指定所需地址类型的任何信息,返回的结构只包含了用于存储IPv4地址的空间。
    // IPv6中引入了 getaddrinfo() 的新API,它是协议无关的,既可用于 IPv4 也可用于 IPv6。
    // getaddrinfo函数能够处理名字到地址以及服务到端口这两种转换,返回的是一个addrinfo的结构(列表)指针而不是一个地址清单。
    // 这些addrinfo结构随后可由套接口函数直接使用。如此以来,getaddrinfo函数把协议相关性安全隐藏在这个库函数内部。
    // 应用程序只要处理由getaddrinfo函数填写的套接口地址结构。该函数在POSIX规范中定义了。
    if ((rv = getaddrinfo(addr,portstr,&hints,&servinfo)) != 0) {
        anetSetError(err, "%s", gai_strerror(rv));
        return ANET_ERR;
    }
    // 遍历 addrinfo 链表,尝试所有可能的地址族(如 IPv6 失败时回退 IPv4)
    for (p = servinfo; p != NULL; p = p->ai_next) {
        // 尝试创建套接字并建立连接。
        // 如果在调用socket()函数或者connect()函数时失败,我们会使用servinfo中的下一项重新尝试。
        if ((s = socket(p->ai_family,p->ai_socktype,p->ai_protocol)) == -1)
            continue;
        // 设置 SO_REUSEADDR 选项(避免 TIME_WAIT 状态端口占用)
        if (anetSetReuseAddr(err,s) == ANET_ERR) goto error;
        // 我们传了ANET_CONNECT_NONBLOCK,因此设置为非阻塞模式
        if (flags & ANET_CONNECT_NONBLOCK && anetNonBlock(err,s) != ANET_OK)
            goto error;
        // 源地址,即slave从节点的地址
        if (source_addr) {
            int bound = 0;
            /* 使用getaddrinfo让我们无需自行判断是IPv4还是IPv6 */
            if ((rv = getaddrinfo(source_addr, NULL, &hints, &bservinfo)) != 0)
            {
                anetSetError(err, "%s", gai_strerror(rv));
                goto error;
            }
            
            for (b = bservinfo; b != NULL; b = b->ai_next) {
                // 绑定源IP
                if (bind(s,b->ai_addr,b->ai_addrlen) != -1) {
                    bound = 1; //bind 成功置1
                    break;
                }
            }
            
            // 释放getaddrinfo分配的内存bservinfo
            freeaddrinfo(bservinfo);
            
            // bound=0说明bind()失败,直接返回
            if (!bound) {
                anetSetError(err, "bind: %s", strerror(errno));
                goto error;
            }
        }
        // 发起连接
        if (connect(s,p->ai_addr,p->ai_addrlen) == -1) {
            /* 如果套接字是非阻塞的,那么在这里connect() 返回一个EINPROGRESS错误是可以的。 */
            if (errno == EINPROGRESS && flags & ANET_CONNECT_NONBLOCK)
                goto end;
            // 其他错误(非EINPROGRESS错误)
            close(s);	// 关闭socket
            s = ANET_ERR;
            continue;
        }

        // 到这里,说明没有错误地结束了一次for循环的迭代,我们就拥有了一个已连接的套接字。让我们返回给调用者。
        goto end;
    }
    // 到这里,说明遍历完addrinfo链表,调用socket()都出错
    if (p == NULL)
        anetSetError(err, "creating socket: %s", strerror(errno));

error:
    if (s != ANET_ERR) {
        close(s);	// 关闭socket
        s = ANET_ERR;
    }

end:
    freeaddrinfo(servinfo);	// 释放getaddrinfo分配的内存bservinfo

    // 尽力处理绑定操作:若已指定了绑定地址,但无法创建套接字,那么尝试不使用绑定地址再次进行创建
    if (s == ANET_ERR && source_addr && (flags & ANET_CONNECT_BE_BINDING)) {
        // 源地址source_addr传NULL,不执行bind操作
        return anetTcpGenericConnect(err,addr,port,NULL,flags);
    } else {
        return s;
    }
}

第 2 部分

注释很清楚了,没啥好说的,先执行连接的读处理器,再执行连接的写处理器,或者反转读写处理器的调用。

readQueryFromClient

经过事件层 connSocketEventHandler 的分发,进入到了连接层,调用连接层读处理器 readQueryFromClient

readQueryFromClient 函数位于 networking.c

void readQueryFromClient(connection *conn) {
    client *c = connGetPrivateData(conn); // 获取客户端对象
    int nread, readlen;
    size_t qblen;

    /* 是否需要延迟从客户端读取数据。如果启用了多线程I/O,则会出现这种情况 */
    if (postponeClientRead(c)) return;

    /* 统计读次数 */
    atomicIncr(server.stat_total_reads_processed, 1);

    readlen = PROTO_IOBUF_LEN;
    // 如果这是一个多批量请求,并且我们正在处理一个足够大的批量复制操作,
    // 那么要尽量提高查询缓冲区中恰好包含表示该对象的SDS(简单动态字符串)字符串的概率,
    // 即便这样做可能会有需要更多次调用 read(2) 函数的风险。
    // 通过这种方式,processMultiBulkBuffer() 函数就可以避免复制缓冲区来创建表示参数的Redis对象。
    if (c->reqtype == PROTO_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1
        && c->bulklen >= PROTO_MBULK_BIG_ARG)
    {
        ssize_t remaining = (size_t)(c->bulklen+2)-sdslen(c->querybuf);

        /* Note that the 'remaining' variable may be zero in some edge case,
         * for example once we resume a blocked client after CLIENT PAUSE. */
        if (remaining > 0 && remaining < readlen) readlen = remaining;
    }

    // 输入缓冲区长度(不是总容量)
    qblen = sdslen(c->querybuf);
    // 更新缓冲区的峰值
    if (c->querybuf_peak < qblen) c->querybuf_peak = qblen;
    // 扩展readlen大小的缓冲区
    c->querybuf = sdsMakeRoomFor(c->querybuf, readlen);
    // read系统调用读取内核socket缓冲区的数据到querybuf+qblen(追加模式),读取长度为readlen
    nread = connRead(c->conn, c->querybuf+qblen, readlen);
    // 注意,都是非阻塞socket读
    // 读操作出错
    if (nread == -1) {
        // 判断连接是否正常
        if (connGetState(conn) == CONN_STATE_CONNECTED) {
            return;
        } else {
            serverLog(LL_VERBOSE, "Reading from client: %s",connGetLastError(c->conn));
            freeClientAsync(c);	//异步释放客户端
            return;
        }
    } else if (nread == 0) {
        serverLog(LL_VERBOSE, "Client closed connection");
        freeClientAsync(c);	// 异步释放客户端
        return;
    } else if (c->flags & CLIENT_MASTER) {
        // 作为从节点,读取master发来的数据
        // 将数据追加到pending_querybuf中
        c->pending_querybuf = sdscatlen(c->pending_querybuf,
                                        c->querybuf+qblen,nread);
    }

    sdsIncrLen(c->querybuf,nread); // 增加querybuf已使用大小
    c->lastinteraction = server.unixtime;	 // 更新最后一次交互事件
    // master发来的数据,更新master的复制偏移量
    if (c->flags & CLIENT_MASTER) c->read_reploff += nread;
    // 统计从网络读取的字节数
    atomicIncr(server.stat_net_input_bytes, nread);
    // 检查输入缓冲区长度是否超过服务器设置的最大缓冲区长度
    // 防止缓冲区溢出攻击
    if (sdslen(c->querybuf) > server.client_max_querybuf_len) {
        sds ci = catClientInfoString(sdsempty(),c), bytes = sdsempty();

        bytes = sdscatrepr(bytes,c->querybuf,64);
        serverLog(LL_WARNING,"Closing client that reached max query buffer length: %s (qbuf initial bytes: %s)", ci, bytes);
        sdsfree(ci);
        sdsfree(bytes);
        freeClientAsync(c); // 异步释放客户端
        return;
    }

    // 客户端输入缓冲区中有更多数据,继续解析它,以防万一有完整的命令可供执行
     processInputBuffer(c);
}

延迟读

postponeClientRead 判断是否将客户端的读操作延迟到 I/O 线程处理。

/* 是否需要延迟从客户端读取数据。如果启用了多线程I/O,则会出现这种情况 */
if (postponeClientRead(c)) return;

当客户端可读事件触发时,通过以下四个条件决定是否推迟读操作:

  1. server.io_threads_active:多线程 I/O 已激活(通过配置指令 io-threads 启用)。
  2. server.io_threads_do_reads:明确允许使用多线程处理读操作(需手动开启配置 io-threads-do-reads yes,默认关闭)。
  3. !ProcessingEventsWhileBlocked:当前未处于阻塞事件处理状态(例如未在加载 RDB/AOF 文件)。
  4. 排除以下客户端类型:
    • CLIENT_MASTER/CLIENT_SLAVE:主从复制专用连接
    • CLIENT_PENDING_READ:已标记为延迟读的客户端
    • CLIENT_BLOCKED:处于阻塞状态的客户端(如执行 BLPOP

当上面 4 个条件都满足,会使用I/O线程延迟读。

// 如果希望稍后使用线程I/O处理客户端读取操作,则返回 1。  
// 此函数由事件循环的读处理器调用。  	
// 调用此函数的一个副作用是:
// 将客户端放入待处理读取客户端链表 server.clients_pending_read,并将其标记为 CLIENT_PENDING_READ 状态。
int postponeClientRead(client *c) {
    if (server.io_threads_active &&
        server.io_threads_do_reads &&
        !ProcessingEventsWhileBlocked &&
        !(c->flags & (CLIENT_MASTER|CLIENT_SLAVE|CLIENT_PENDING_READ|CLIENT_BLOCKED))) 
    {
        c->flags |= CLIENT_PENDING_READ;
        listAddNodeHead(server.clients_pending_read,c);
        return 1;
    } else {
        return 0;
    }
}

优化多批量请求(Multi-Bulk Request)

    readlen = PROTO_IOBUF_LEN;
    // 如果这是一个多批量请求,并且我们正在处理一个足够大的批量复制操作,
    // 那么要尽量提高查询缓冲区中恰好包含表示该对象的SDS(简单动态字符串)字符串的概率,
    // 即便这样做可能会有需要更多次调用 read(2) 函数的风险。
    // 通过这种方式,processMultiBulkBuffer() 函数就可以避免复制缓冲区来创建表示参数的Redis对象。
    if (c->reqtype == PROTO_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1
        && c->bulklen >= PROTO_MBULK_BIG_ARG)
    {
        ssize_t remaining = (size_t)(c->bulklen+2)-sdslen(c->querybuf);

        /* Note that the 'remaining' variable may be zero in some edge case,
         * for example once we resume a blocked client after CLIENT PAUSE. */
        if (remaining > 0 && remaining < readlen) readlen = remaining;
    }

读数据到 querybuf

调用 connRead 把 Socket 读缓冲区中的数据拷贝到 redis 的 querybuf 中。

// 从连接中读取数据,其行为与read(2)系统调用相同。
// 与 read(2)一样,有可能出现短读(即未读取到请求的全部字节数)的情况。返回值0表示连接已关闭,返回值-1表示出现了错误。
// 调用者不应依赖于errno(错误号)。要测试类似 EAGAIN(表示资源暂时不可用)的情况,
// 应使用connGetState()函数来查看连接状态是否仍为CONN_STATE_CONNECTED(连接已建立状态)。
static inline int connRead(connection *conn, void *buf, size_t buf_len) {
    return conn->type->read(conn, buf, buf_len);
}

CT_Socket 对 read 的实现是 connSocketRead,位于 connection.c

static int connSocketRead(connection *conn, void *buf, size_t buf_len) {
    // 系统调用read读取内核缓冲区数据
    // 注意:这里的socket都是非阻塞的
    int ret = read(conn->fd, buf, buf_len);
    // read返回0,说明tcp连接断开了
    if (!ret) {
        conn->state = CONN_STATE_CLOSED;  // 设置连接标志
    } else if (ret < 0 && errno != EAGAIN) {
        // 如果返回EAGAIN错误,只是因为缓冲区中没有更多数据可读了,这不算错误,可以忽略
        // 其他错误,需要处理
        conn->last_errno = errno; // 记录错误号

        // 不要覆盖尚未连接的连接的状态,以免干扰处理程序回调
        if (conn->state == CONN_STATE_CONNECTED)
            conn->state = CONN_STATE_ERROR; // 设置连接错误状态
    }

    return ret;
}

校验缓冲区大小

if (sdslen(c->querybuf) > server.client_max_querybuf_len){
    // .... 记录日志
    freeClientAsync(c);	// 异步关闭客户端
}

可在 redis.conf 中使用配置指令 client-query-buffer-limit 修改,默认 1GB。防止恶意客户端通过超大请求耗尽内存。

协议解析入口

processInputBuffer(c)

processInputBuffer 支持解析两种请求格式 PROTO_REQ_MULTIBULKPROTO_REQ_INLINE,它们会分别调用 processInlineBufferprocessMultibulkBuffer 进行处理。

如果是主线程调用 processInputBuffer,则它会解析一条命令执行一条命令,直到处理完 querybuf 中所有的完整命令。

如果是 I/O 线程调用 processInputBuffer,则只会在解析完一条完整命令后,便不再解析,并设置相关标志,让主线程去执行命令。

/* 每当客户端结构体 'c' 中有更多查询缓冲区数据需要处理时,就会调用此函数。
 * 这可能是因为我们从套接字读取了更多数据,
 * 或者客户端之前被阻塞,之后又被重新激活,
 * 所以可能存在已构成完整命令、待处理的查询缓冲区数据。 */
void processInputBuffer(client *c) {
    /* 只要输入缓冲区中有数据,就持续处理 */
    while(c->qb_pos < sdslen(c->querybuf)) {
        /* 如果客户端正在处理其他事情,立即终止处理 */
        if (c->flags & CLIENT_BLOCKED) break;

        /* 对于 c->argv 中已有待执行命令的客户端,不再处理更多缓冲区数据 */
        if (c->flags & CLIENT_PENDING_COMMAND) break;

        /* 当从节点上有繁忙脚本执行时,不处理主节点的输入。
         * 只是积累 replication stream(而不是像对待其他客户端那样回复 -BUSY),
         * 之后再恢复处理。 */
        if (server.lua_timedout && c->flags & CLIENT_MASTER) break;

        /* CLIENT_CLOSE_AFTER_REPLY 标志会在回复写入客户端后关闭连接。
         * 确保设置该标志后不再增加回复内容(即不再处理更多命令)。
         * 对于需要尽快终止的客户端同理。 */
        if (c->flags & (CLIENT_CLOSE_AFTER_REPLY|CLIENT_CLOSE_ASAP)) break;

        /* 当请求类型未知时,确定请求类型 */
        if (!c->reqtype) {
            // '*' 开头的表示MULTIBULK请求
            // MULTIBULK请求以 *<n>\r\n 开头,后跟多个 $<len>\r\n<data>\r\n 块。
            if (c->querybuf[c->qb_pos] == '*') { 
                c->reqtype = PROTO_REQ_MULTIBULK;
            } else {
                // INLINE请求将命令及其参数用空格分隔,在一行内输入。整体请求格式以换行符(\r\n)结尾。
                // 例如,set key value\r\n
                c->reqtype = PROTO_REQ_INLINE;
            }
        }

        if (c->reqtype == PROTO_REQ_INLINE) {
            // 处理INLINE请求
            if (processInlineBuffer(c) != C_OK) break;
            // gopher请求,暂不关注
            if (server.gopher_enabled && !server.io_threads_do_reads &&
                ((c->argc == 1 && ((char*)(c->argv[0]->ptr))[0] == '/') ||
                  c->argc == 0))
            {
                processGopherRequest(c);
                resetClient(c);
                c->flags |= CLIENT_CLOSE_AFTER_REPLY;
                break;
            }
        } else if (c->reqtype == PROTO_REQ_MULTIBULK) {
            // 处理 MULTIBULK 请求
            // *3\r\n$3\r\nSET\r\n$5\r\nmykey\r\n$7\r\nmyvalue\r\n 解析为 
            // c->argv=["SET", "mykey", "myvalue"]
            if (processMultibulkBuffer(c) != C_OK) break;
        } else {
            serverPanic("Unknown request type");
        }

        /* MULTIBULK处理可能会遇到长度等于 0 的情况 */
        if (c->argc == 0) {
            resetClient(c);
        } else {
            // 在postponeClientRead中如果判断可以在I/O 线程中进行读取操作,
            // 就会设置 CLIENT_PENDING_READ 标志。
            // 但是 I/O 线程不负责执行命令,命令在解析完成后交给主线程执行。
            // 因此,如果当前是I/O线程执行该函数,在解析完命令后,只需设置CLIENT_PENDING_COMMAND标志即可
            if (c->flags & CLIENT_PENDING_READ) {
                c->flags |= CLIENT_PENDING_COMMAND;
                break;
            }

            // 走到这里说明当前是主线程在解析命令,
            // 接下来就需要执行命令了。
            if (processCommandAndResetClient(c) == C_ERR) {
                /* 如果客户端不再有效,避免退出此循环并稍后修剪客户端缓冲区。
                 * 因此在这种情况下尽快返回。 */
                return;
            }
        }
    }

    // querybuf中还有未处理的数据
    if (c->qb_pos) {
        // 截断 querybuf,保留未处理字节
        sdsrange(c->querybuf,c->qb_pos,-1);
        c->qb_pos = 0; // qb_pos重置为0
    }
}
处理 MULTIBULK 请求

processMultibulkBuffer 用于解析 RESP 协议中的 MULTIBULK 请求(以 * 开头的数组格式,每一个数组元素就一个 bulk),将客户端发送的原始字节流转换为 client->argv 参数列表,为后续命令执行做准备。

例如:*3\r\n$3\r\nset\r\n$3\r\nkey\r\n$5\r\nvalue\r\n --> c->argv = [“set”,“key”,“value”],*3 表示数组长度为 3,$3 表示数组元素 bulk 占 3 个字节。

// 处理客户端 “c” 的查询缓冲区 querybuf,并设置客户端 c->argv,为命令执行做准备。
// 如果在运行该函数后,客户端拥有一个格式正确且可立即处理的命令,则返回 C_OK;
// 否则,如果仍需从缓冲区读取更多内容才能获取完整的命令,则返回 C_ERR。
// 当出现协议错误时,该函数同样返回 C_ERR:在这种情况下,会设置客户端c以回复错误信息并关闭连接。
// 如果 processInputBuffer () 检测到下一条命令是 RESP 格式(即命令的第一个字节为 '*'),就会调用此函数。
// 否则,对于内联命令,会调用 processInlineBuffer () 函数。
int processMultibulkBuffer(client *c) {
    char *newline = NULL;
    int ok;
    long long ll;

    // 如果上一个multibulk请求没有处理完,则 multibulklen != 0,
    // 否则,说明开始解析一条新的multibulk请求
    if (c->multibulklen == 0) {
        /* The client should have been reset */
        serverAssertWithInfo(c,NULL,c->argc == 0);

        /* Multi bulk length cannot be read without a \r\n */
        newline = strchr(c->querybuf+c->qb_pos,'\r');
        if (newline == NULL) {
            if (sdslen(c->querybuf)-c->qb_pos > PROTO_INLINE_MAX_SIZE) {
                addReplyError(c,"Protocol error: too big mbulk count string");
                setProtocolError("too big mbulk count string",c); // 客户端对象记录错误
            }
            return C_ERR;
        }

        /* Buffer should also contain \n */
        if (newline-(c->querybuf+c->qb_pos) > (ssize_t)(sdslen(c->querybuf)-c->qb_pos-2))
            return C_ERR;

        /* We know for sure there is a whole line since newline != NULL,
         * so go ahead and find out the multi bulk length. */
        serverAssertWithInfo(c,NULL,c->querybuf[c->qb_pos] == '*');
        // +1 跳过第一个 '*',\r\n前面的数字就是数组长度,例如:*3\r\n....
        ok = string2ll(c->querybuf+1+c->qb_pos,newline-(c->querybuf+1+c->qb_pos),&ll);
        if (!ok || ll > 1024*1024) {
            addReplyError(c,"Protocol error: invalid multibulk length");
            setProtocolError("invalid mbulk count",c); // 客户端对象记录错误
            return C_ERR;
        } else if (ll > 10 && authRequired(c)) {
            addReplyError(c, "Protocol error: unauthenticated multibulk length");
            setProtocolError("unauth mbulk count", c); // 客户端对象记录错误
            return C_ERR;
        }

        // 移动缓冲区指针,+2 跳过\r\n
        c->qb_pos = (newline-c->querybuf)+2;

        if (ll <= 0) return C_OK;

        c->multibulklen = ll; // 设置multibulk数组长度

        /* Setup argv array on client structure */
        if (c->argv) zfree(c->argv);
        // 分配multibulk数组,用以保存bulk数组元素
        c->argv = zmalloc(sizeof(robj*)*c->multibulklen);
        c->argv_len_sum = 0;
    }

    serverAssertWithInfo(c,NULL,c->multibulklen > 0);
    while(c->multibulklen) {
        /* Read bulk length if unknown */
        if (c->bulklen == -1) {
            newline = strchr(c->querybuf+c->qb_pos,'\r');
            if (newline == NULL) {
                if (sdslen(c->querybuf)-c->qb_pos > PROTO_INLINE_MAX_SIZE) {
                    addReplyError(c,
                        "Protocol error: too big bulk count string");
                    setProtocolError("too big bulk count string",c); // 客户端对象记录错误
                    return C_ERR;
                }
                break;
            }

            /* Buffer should also contain \n */
            if (newline-(c->querybuf+c->qb_pos) > (ssize_t)(sdslen(c->querybuf)-c->qb_pos-2))
                break;

            if (c->querybuf[c->qb_pos] != '$') {
                addReplyErrorFormat(c,
                    "Protocol error: expected '$', got '%c'",
                    c->querybuf[c->qb_pos]);
                setProtocolError("expected $ but got something else",c); // 客户端对象记录错误
                return C_ERR;
            }

            // ...\r\n$3\r\n,字符串3转为数字3
            ok = string2ll(c->querybuf+c->qb_pos+1,newline-(c->querybuf+c->qb_pos+1),&ll);
            if (!ok || ll < 0 ||
                (!(c->flags & CLIENT_MASTER) && ll > server.proto_max_bulk_len)) {
                addReplyError(c,"Protocol error: invalid bulk length");
                setProtocolError("invalid bulk length",c); // 客户端对象记录错误
                return C_ERR;
            } else if (ll > 16384 && authRequired(c)) {
                addReplyError(c, "Protocol error: unauthenticated bulk length");
                setProtocolError("unauth bulk length", c); // 客户端对象记录错误
                return C_ERR;
            }

            // 移动缓冲区位置qb_pos
            c->qb_pos = newline-c->querybuf+2;
            if (ll >= PROTO_MBULK_BIG_ARG) {
                /* If we are going to read a large object from network
                 * try to make it likely that it will start at c->querybuf
                 * boundary so that we can optimize object creation
                 * avoiding a large copy of data.
                 *
                 * But only when the data we have not parsed is less than
                 * or equal to ll+2. If the data length is greater than
                 * ll+2, trimming querybuf is just a waste of time, because
                 * at this time the querybuf contains not only our bulk. */
                if (sdslen(c->querybuf)-c->qb_pos <= (size_t)ll+2) {
                    sdsrange(c->querybuf,c->qb_pos,-1);
                    c->qb_pos = 0;
                    /* Hint the sds library about the amount of bytes this string is
                     * going to contain. */
                    c->querybuf = sdsMakeRoomFor(c->querybuf,ll+2-sdslen(c->querybuf));
                }
            }
            c->bulklen = ll;	// 设置bulk数组元素长度
        }

        /* Read bulk argument */
        // 例如,...\r\n$3\r\nset\r\n,+2 表示 set 数组元素后面的 \r\n
        // 如果数据不完全,不是错误,等待客户端继续发送数据,直到凑成完整的命令
        if (sdslen(c->querybuf)-c->qb_pos < (size_t)(c->bulklen+2)) {
            /* Not enough data (+2 == trailing \r\n) */
            break;	
        } else {
            // 优化措施:如果缓冲区中仅包含我们的批量元素,并且bulk足够大(大于PROTO_MBULK_BIG_ARG,32KB)
            // 那么我们不会通过复制querybuf中的数据来创建一个新对象,
            // 而是直接使用当前的SDS字符串(querybufV就是个SDS)。
            if (c->qb_pos == 0 &&
                c->bulklen >= PROTO_MBULK_BIG_ARG &&
                sdslen(c->querybuf) == (size_t)(c->bulklen+2))
            {
                c->argv[c->argc++] = createObject(OBJ_STRING,c->querybuf);
                c->argv_len_sum += c->bulklen;
                sdsIncrLen(c->querybuf,-2); /* remove CRLF */
                /* Assume that if we saw a fat argument we'll see another one
                 * likely... */
                // querybuf已经给bulk用了,
                // 重新分配一个sds给querybuf
                c->querybuf = sdsnewlen(SDS_NOINIT,c->bulklen+2);
                sdsclear(c->querybuf);
            } else {
                // 根据querybuf中的bulk,为它分配一个sds,将数据拷贝过去
                c->argv[c->argc++] =
                    createStringObject(c->querybuf+c->qb_pos,c->bulklen);
                c->argv_len_sum += c->bulklen; // 累计bulk长度
                c->qb_pos += c->bulklen+2; // 更新缓冲区指针qb_pos
            }
            c->bulklen = -1; // 一个bulk处理完,bulklen 置为 -1,继续下一个bulk
            c->multibulklen--;
        }
    }

    /* We're done when c->multibulk == 0 */
    // 完整的multibulk请求处理完成,返回ok
    if (c->multibulklen == 0) return C_OK;

    /* Still not ready to process the command */
    // 否则返回错误,继续累计网络数据,再处理
    return C_ERR;
}

当协议解析错误,向客户端回复错误消息,然后调用 setProtocolError。我们看看这个函数做了什么

#define PROTO_DUMP_LEN 128
static void setProtocolError(const char *errstr, client *c) {
    if (server.verbosity <= LL_VERBOSE || c->flags & CLIENT_MASTER) {
        // ..... 记录日志
    }
    c->flags |= (CLIENT_CLOSE_AFTER_REPLY|CLIENT_PROTOCOL_ERROR); // 设置错误标志,后面处理
}

也是记录日志,设置客户端标志,后面销毁客户端,断开连接。

处理 INLINE 请求

INLINE 请求格式通过空格分隔参数,并在最后添加 \r\n。例如:get key\r\n。适用于 Telnet 等简单交互场景。

// 与processMultibulkBuffer()函数类似,但此函数处理的是内联协议(而不是RESP协议),
// 它会使用客户端的查询缓冲区,并在客户端结构体中创建一个准备好执行的命令。
// 如果命令已准备好执行,则返回C_OK;如果仍需要读取更多协议内容才能形成一个格式正确的命令,则返回C_ERR。
// 当存在协议错误时,该函数也会返回C_ERR:在这种情况下,会设置客户端结构体以回复错误信息并关闭连接。
int processInlineBuffer(client *c) {
    char *newline;
    int argc, j, linefeed_chars = 1;
    sds *argv, aux;
    size_t querylen;

    /* Search for end of line */
    newline = strchr(c->querybuf+c->qb_pos,'\n');

    /* Nothing to do without a \r\n */
    if (newline == NULL) {
        if (sdslen(c->querybuf)-c->qb_pos > PROTO_INLINE_MAX_SIZE) {
            addReplyError(c,"Protocol error: too big inline request");
            setProtocolError("too big inline request",c); // 客户端对象记录错误
        }
        return C_ERR;
    }

    /* Handle the \r\n case. */
    if (newline != c->querybuf+c->qb_pos && *(newline-1) == '\r')
        newline--, linefeed_chars++;

    /* Split the input buffer up to the \r\n */
    querylen = newline-(c->querybuf+c->qb_pos);
    // 去除最后的\r\n,创建一个新的sds,拷贝过去
    aux = sdsnewlen(c->querybuf+c->qb_pos,querylen);
    argv = sdssplitargs(aux,&argc); // 分割命令和参数
    sdsfree(aux);
    if (argv == NULL) {
        addReplyError(c,"Protocol error: unbalanced quotes in request");
        setProtocolError("unbalanced quotes in inline request",c); // 客户端对象记录错误
        return C_ERR;
    }

    // 全量复制期间,从节点需完成 RDB 文件接收、数据加载等操作,可能耗时数分钟(尤其在数据量大的场景)。
    // 若主节点在此期间未收到从节点心跳,可能触发超时机制,强制终止复制(replication)连接。
    // 此时,从节点通过发送空行(querylen == 0)向主节点(Master)表明存活状态,防止主节点误判。
    if (querylen == 0 && getClientType(c) == CLIENT_TYPE_SLAVE)
        c->repl_ack_time = server.unixtime;

    // 主节点永远都不应该向我们发送内联协议来执行实际命令。若出现这种情况,
    // 很可能是 Redis 存在漏洞,致使协议出现了某种不同步,比如 PSYNC 操作失败。
    //
    // 不过存在一个例外:主节点可能仅发送一个换行符,以此来维持连接的活跃状态。
    if (querylen != 0 && c->flags & CLIENT_MASTER) {
        sdsfreesplitres(argv,argc);
        serverLog(LL_WARNING,"WARNING: Receiving inline protocol from master, master stream corruption? Closing the master connection and discarding the cached master.");
        setProtocolError("Master using the inline protocol. Desync?",c); // 客户端对象记录错误
        return C_ERR;
    }

    /* Move querybuffer position to the next query in the buffer. */
    c->qb_pos += querylen+linefeed_chars;

    /* Setup argv array on client structure */
    if (argc) {
        if (c->argv) zfree(c->argv);
        c->argv = zmalloc(sizeof(robj*)*argc);
        c->argv_len_sum = 0;
    }

    /* Create redis objects for all arguments. */
    for (c->argc = 0, j = 0; j < argc; j++) {
        c->argv[c->argc] = createObject(OBJ_STRING,argv[j]);
        c->argc++;
        c->argv_len_sum += sdslen(argv[j]);
    }
    zfree(argv);
    return C_OK;
}
<think>我们正在讨论Redis主从复制模式下Slave节点如何处理请求,以及客户端如何路由请求到Slave节点。根据引用[1]和[5],主从复制模式中,Master节点负责写操作,Slave节点负责操作,实现写分离。但是,Redis本身并不提供自动的路由机制,需要客户端或中间件来实现。具体分析:1.Slave节点处理请求:Slave节点启动后会连接到Master节点同步数据,之后Master的数据变更会异步复制到Slave。因此,Slave节点上的数据可能不是最新的(存在延迟,见引用[2])。客户端可以直接连接Slave节点执行命令。2.客户端路由实现方式:a.手动配置:在客户端代码中,显式指定写操作发送到Master节点,操作发送到Slave节点。例如,在Java中使用Jedis,可以创建两个连接池,分别指向Master和Slave,然后在业务代码中根据操作类型选择连接。b.代理中间件:使用如Twemproxy、Codis等代理,由代理层自动将请求路由到Slave节点,写请求路由到Master节点。这样客户端只需连接代理,无需关心后端拓扑。c.支持写分离的客户端库:一些高级的Redis客户端库(如Lettuce)内置了写分离功能,通过配置主从节点地址,客户端库会自动路由请求。3.注意事项:-数据一致性:由于主从复制是异步的,Slave节点可能存在数据延迟。对于一致性要求高的场景,可能需要强制从Master(引用[2]提到可以通过外部监控程序检测延迟,或者使用WAIT命令等待同步)。-负载均衡:如果有多个Slave节点,客户端或代理需要实现负载均衡(如轮询、随机等)来分配请求。4.示例配置(引用[4]提到复制缓冲区配置,这会影响复制性能和延迟,但和客户端路由无关):在客户端实现写分离的伪代码示例:```java//伪代码示例:使用两个连接池JedisPoolmasterPool=newJedisPool("master_ip",6379);JedisPoolslavePool=newJedisPool("slave_ip",6379);//写操作使用mastertry(Jedismaster=masterPool.getResource()){master.set("key","value");}//操作使用slavetry(Jedisslave=slavePool.getResource()){Stringvalue=slave.get("key");}```或者使用Lettuce(支持写分离):```javaRedisClientclient=RedisClient.create();StatefulRedisMasterSlaveConnection<String,String>connection=MasterSlave.connect(client,newUtf8StringCodec(),Arrays.asList(newRedisURI("master_ip",6379,30,TimeUnit.SECONDS),newRedisURI("slave1_ip",6379,30,TimeUnit.SECONDS),newRedisURI("slave2_ip",6379,30,TimeUnit.SECONDS)));connection.setReadFrom(ReadFrom.SLAVE);//设置策略:优先从Slave//使用连接时,写操作自动发往Master操作发往SlaveRedisCommands<String,String>commands=connection.sync();commands.set("key","value");//写操作发往MasterStringvalue=commands.get("key");//操作发往Slave(根据策略选择一个)```总结:-Slave节点直接处理请求,但数据可能不是最新。-客户端路由实现方式包括:手动配置、代理中间件、智能客户端库。-需要根据数据一致性要求和系统复杂度选择合适的方案。相关问题:1.Redis主从复制数据延迟如何监控和解决?2.如何配置RedisSentinel以实现自动故障转移和写分离?3.RedisCluster模式下如何实现写分离?</think>### Redis 主从复制模式:Slave 请求处理与客户端路由实现 #### 一、Slave 节点处理请求的机制 1. **写分离架构** - **Master**:**独占写权限**(所有写操作必须发送到 Master) - **Slave**:**只副本**(接收客户端请求,数据通过异步复制从 Master 同步)[^1][^5] - **数据一致性**:异步复制导致 Slave 数据可能**延迟**(取决于网络带宽和命令阻塞)[^2] 2. **Slave 请求处理流程** ```mermaid sequenceDiagram Client->>Slave: 发送请求 (GET key) Slave-->>Slave: 检查本地数据 alt 数据存在且最新 Slave->>Client: 返回数据 else 数据过期或不存在 Slave->>Master: 请求最新数据 Master->>Slave: 发送增量数据 Slave->>Client: 返回更新后数据 end ``` 3. **关键特性** - **无写权限**:Slave 拒绝所有写命令(返回 `READONLY` 错误) - **复制延迟容忍**:业务需能接受**最终一致性**(如商品展示页) - **负载分担**:多个 Slave 可**水平扩展吞吐量**(理论上限 10万+/秒)[^3] #### 二、客户端路由实现方式 ##### 方式1:手动配置路由(基础方案) ```java // Java 伪代码示例 JedisPool masterPool = new JedisPool("master_ip", 6379); // 写连接池 JedisPool slavePool = new JedisPool("slave_ip", 6379); // 连接池 public void handleRequest(String key, String value) { if (isWriteOperation()) { try (Jedis master = masterPool.getResource()) { master.set(key, value); // 写操作路由到Master } } else { try (Jedis slave = slavePool.getResource()) { String result = slave.get(key); // 操作路由到Slave } } } ``` **缺点**:需业务代码显式区分写,故障转移需手动干预[^4] ##### 方式2:代理中间件(推荐生产使用) - **常用工具**:Twemproxy、Predixy、AWS ElastiCache Proxy - **路由逻辑**: ```mermaid graph LR Client-->Proxy Proxy-->|Write| Master Proxy-->|Read| Slave1 Proxy-->|Read| Slave2 ``` - **配置示例**(Predixy): ```yaml # predixy.conf ProxyServer: Bind: 0.0.0.0:6379 ClusterServerPool: Master: 192.168.1.10:6379 # Master节点 Slaves: - 192.168.1.11:6379 # Slave节点1 - 192.168.1.12:6379 # Slave节点2 ReadStrategy: RoundRobin # 负载均衡策略 ``` ##### 方式3:智能客户端库(现代方案) - **支持库**:Lettuce(Java)、redis-py-cluster(Python)、go-redis(Go) - **Lettuce 示例**: ```java List<RedisURI> nodes = Arrays.asList( RedisURI.create("redis://master:6379"), RedisURI.create("redis://slave1:6379"), RedisURI.create("redis://slave2:6379") ); RedisClient client = RedisClient.create(); StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(client, StringCodec.UTF8, nodes); connection.setReadFrom(ReadFrom.SLAVE); // 设置策略:优先Slave RedisCommands<String, String> commands = connection.sync(); commands.set("key", "value"); // 自动路由到Master String value = commands.get("key"); // 自动路由到Slave ``` **优势**:自动感知拓扑变化,支持写分离策略配置[^5] #### 三、关键优化策略 1. **降低复制延迟** - 增大复制缓冲区:`repl-backlog-size 256mb`(默认1MB)[^4] - 网络优化:主从节点同机房部署,万兆网络 - 监控延迟:使用 `INFO replication` 查看 `slave_repl_offset` 2. **负载均衡** ```mermaid pie title 请求分配策略 “轮询(RoundRobin)” : 45 “权重(Weighted)” : 30 “就近路由(Geo)” : 25 ``` 3. **一致性保障** - **强制Master**:对一致性要求高的操作,客户端显式指定Master - **WAIT命令**:`WAIT <numreplicas> <timeout>` 等待N个副本同步(牺牲性能)[^2] #### 四、适用场景与限制 | 场景 | 适用性 | 说明 | |---------------------|--------|--------------------------| | 密集型应用 | ★★★★★ | 电商商品列表、资讯类网站 | | 写后立即 | ★★☆☆☆ | 需配合WAIT或强制Master | | 跨地域部署 | ★★★☆☆ | 需考虑网络延迟 | | 强一致性要求 | ★☆☆☆☆ | 建议改用Redis Cluster | > **最佳实践**: > 1. 请求占比 >80% 时使用主从复制 > 2. 使用代理或智能客户端减少代码侵入 > 3. 监控 `master_link_down_since_seconds` 和 `lag` 指标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值