
多目标跟踪
文章平均质量分 94
跟踪
Hali_Botebie
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【目标航迹管理(1)】基于d-s证据理论信息融合的多核目标跟踪方法
我们为什么会有这个议题?因为航机起始方法。处理目标航迹起始的方法主要分为两大类:批处理和序贯。在杂波密度比较高的环境下,比如有红外卫星或地面雷达监视区域,则选用批处理方法;而在杂波密度相对比较小的区域,则选用序贯方法会比较合适;原创 2024-02-20 16:58:06 · 1665 阅读 · 0 评论 -
【数据关联(1)】Tracking-by-detection 多目标跟踪范式与“数据关联”的关系说明
这个领域有一些专有名词需要大家清楚!原创 2023-09-11 15:55:11 · 3336 阅读 · 2 评论 -
【数据关联(3)】5月9日数据匹配图论、匈牙利、KM算法,多目标跟踪
总体目标二分图博客推荐匈牙利算法步骤匈牙利算法博客推荐KM算法步骤KM算法标杆(又名顶标)的引入KM流程详解KM算法博客推荐贪心算法英文注解无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm)背景知识...原创 2020-05-09 17:27:36 · 2649 阅读 · 1 评论 -
【数据关联(25)】最近邻域法应用在数据关联:NNDA
在这些步骤中,关联门可以选择矩形或椭圆形,对于最近邻算法,相似性度量方法选择加权欧式距离。数据关联是将不确定性观测数据与轨迹进行配对,而最近邻算法又是什么呢?最近邻算法利用加权欧式距离计算每一个观测数据到真实目标的距离,然后再取其最近的一个观测数据作为目标真实状态,所以,当我们收到传感器传回来的观测数据时,首先计算加权欧式距离,然后再取其最近的点迹。本文将分两部分介绍最近邻算法。第一部分着重介绍加权欧式距离公式的由来,第二部分举例说明最近邻的含义。转载 2023-01-11 16:43:07 · 2298 阅读 · 0 评论 -
【数据关联(26)】数据关联技术方向
联合概率数据关联(Joint Probabilistic Data Association,JPDA) 联合概率数据互联JPDA是数据关联算法之一,它的基本思想是:对应于观测数据落入跟踪门相交区域的情况,这些观测数据可能来源于多个目标。JPDA的目的在于计算观测数据与每一个目标之间的关联概率,且认为所有的有效回波都可能源于每个特定目标,只是它们源于不同目标的概率不同。JPDA算法的优点在于...转载 2023-01-11 16:41:21 · 3178 阅读 · 0 评论 -
【数据关联(4)】SIMPLE ONLINE AND REALTIME TRACKING
首先介绍跟踪:目标跟踪又分为单目标跟踪和多目标跟踪单目标跟踪在视频的初始帧画面上框出单个目标,预测后续帧中该目标的大小与位置。典型算法有 Mean shift(用卡尔曼滤波、粒子滤波进行状态预测)、TLD(基于在线学习的跟踪)、KCF(基于相关性滤波)等。像 Opencv 等库内置了许多跟踪算法,KCF 是一种很经典的单目标跟踪算法,速度不是很快,但是精度不错多目标追踪不像单目标追踪一样先在初始帧上框出单个目标,而是追踪多个目标的大小和位置,且每一帧中目标的数量和位置都可能变化。此外,多目标的追踪中转载 2021-04-20 09:29:05 · 670 阅读 · 0 评论