
角度回归
文章平均质量分 94
Hali_Botebie
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
角度回归——八参数检测四边形RSDet
遥感目标检测 RSDet 是四边形检测器,而且都考虑到了顺序标签点(sequential label points)的问题。我们首先介绍两种主流的边界框参数化协议,即五参数模型和八参数模型。然后,我们正式识别了五参数系统中旋转角度的不连续性及其导致的宽高突变。此外,我们定量地展示了五参数系统中由不同测量单位引起的回归不一致性带来的负面影响。我们将这些问题统称为旋转敏感误差 ( Rotation Sensitivity Error,RSE),并提出了一种针对五参数系统的调制旋转损失函数,以实现更平滑的学习。原创 2025-05-22 16:25:30 · 1090 阅读 · 0 评论 -
角度回归——八参数检测四边形Gliding Vertex
遥感目标检测Gliding Vertex 是四边形检测器,而且都考虑到了顺序标签点(sequential label points)的问题。首先我们要了解一下为什么在做四边形检测前要对四个角点进行排序。举一个简单的例子,如果一个四边形的ground-truth是(x1,y1,x2,y2,x3,y3,x4,y4)并且所有的ground-truth并不是按一定规则顺序标注的,那么检测器有可能给出的预测结果是(x2,y2,x3,y3,x4,y4,x1,y1)。原创 2025-05-22 15:49:09 · 887 阅读 · 0 评论 -
【角度回归(1)】Eula 损失函数,使用sin联合SmoothL1, MultiBin 全局方向损失,L1/L2-norm 的周期损失函数,CenterPoint,CSL环形平滑标签
Lloc定位损失试图最小化真实值与覆盖该值的所有 bin 之间的差异,这相当于最大化余弦距离.其中 nθ∗ 是覆盖真实角度 θ∗ 的 bin 数量,ci 是 bin i 中心的角度,Δθi 是需要应用于 bin i 中心的变化。smooth L1损失函数曲线如下图所示,作者这样设置的目的是想让loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点(指的是距离中心较远的点)、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞。给定固有的相机参数,特定像素的光线方向计算起来很简单。原创 2022-11-18 11:26:54 · 2184 阅读 · 0 评论