关于《损失模型》的一点笔记——第二部分精算模型-1随机变量与分布函数

本文探讨了精算模型中随机变量与分布函数的重要概念,包括分布函数的4个基本模型、生存函数、概率密度函数、概率函数、风险率等。通过对这些概念的解释和示例,展示了它们在描述未来不确定支付流中的应用。此外,还介绍了诸如生存函数、概率密度函数、概率函数、风险率等关键概念,以及它们之间的关系和作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般的精算模型尝试表现出未来不确定的支付流,不确定性包括事件是否会发生、发生的时间以及损失量。

一些概念:
1. 现象是指可以观测到的发生。
2. 试验是指在一定条件下对某给定现象的一个观测。
3. 一次试验的最终观测称为结果。
4. 事件是一个或多个结果的集合。
5. 随机现象是指试验可能会有一个以上的结果。
6. 具有随机现象的事件称为不确定结果。
7. 概率是对一个事件的结果发生可能性的度量,这个度量经过标准化处理,从0增加到1的数值表示。
8. 随机变量是一个函数,它对每一个可能结果赋予一个数值。

分布函数和4个模型

某随机变量X的累积分布函数F(x)满足以下四个必要条件
1.对所有x,0≤F(x)≤1。
2.F(x)是非降的。
3.F(x)是右连续的。
4. limxF(x)=0 limx→−∞F(x)=0 limx+F(x)=1 limx→+∞F(x)=1

基于此的4个模型大概长这个样子(灵魂画作)
这里写图片描述

第一行左边是典型的 F(x)=ax+b F(x)=ax+b,具体约束参照四个必要条件,abmn均为正数,不详细说了。
第一行右边是 F(x)=1b/xa F(x)=1−b/xa
第二行左边是 F(x)=0mn1x00x<aaxbxb F(x)={ 0x<0m0≤x<ana≤x<b1x≥b
第二行右边是 F(x)={ 01beaxx0x0 F(x)={ 0x<01−be−axx≥0,那个圈是画错的,无视就好了。(其实我是想画0和函数的值是区分的,手抖画错了2333)

以上4个模型就是常用的分布函数,前两个是连续分布,第三个是离散分布,第四个是混合分布。
从我个人的角度理解,分布函数常常用于描述事物本身。

生存函数

生存函数是分布函数的“补函数”,记为S(x)。S(x)=1-F(x),故而
1.对所有x,0≤S(x)≤1。
2.S(x)是不增的。
3.F(x)是右连续的。
4. limxS(x)=1 limx→−∞S(x)=1 limx+S(x)=0 limx→+∞S(x)=0

概率密度函数

概率密度函数f(x),简称为密度函数,它表示分布函数的导数或者生存函数导数的负值,即f(x)=F’(x)=-S’(x),有时缩写为pdf。
随机变量在密度函数比较高的区域,发生的可能性将高于比较低的区域。

概率函数

概率函数p(x),也称为概率质点函数,表示随机变量在概率值为非零点的概率。一般用在离散型分布函数或者混合型分布函数。

风险率

风险率h(x),也称作死亡力(也写作μ(x))或者失效率(也写作λ(x)),表示密度函数与生存函数的比值,即h(x)=f(x)/S(x)
所以,先前的4个模型变成了这个样子
这里写图片描述

众数

众数是指最有可能发生的值,对于离散型则是概率函数最大的点,对于连续型则是密度函数最大值的点。

随机变量X的k阶原点矩,为随机变量k次幂的期望(平均)值(如果它存在的话)。用E(X^k)。一阶原点矩为随机变量的均值,通常记为μ。
μx={

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值