一文读懂医学基础模型,带你全面了解医学大模型到底是什么!

从ChatGPT到DeepSeek,大模型日渐受到越来越多的关注。在医学领域,大模型更多地被称作基础模型(Foundation Model),其通过大规模未标注数据集进行训练,能够有效应用于各种下游医学辅助诊断任务。本文综合考量临床需求与人工智能技术进展,旨在介绍基础模型的概念和术语,希望能够帮助各位读者了解大模型在医学领域产生的变革性影响。

什么是医学基础模型

基础模型通常是指参数量从数十亿到数千亿不等,利用海量数据训练的大规模神经网络模型。医学基础模型往往是参照通用基础模型修改而来,其特点一是使用自监督训练策略以减少对大量专家标注数据集的依赖,二是能够处理多模态数据。医学基础模型通常包括编码器、融合模块以及多模态解码器三个组成部分。

编码器旨在从输入数据中提取有意义的特征,并将其压缩为低维表示。在医学基础模型中,每种模态均对应一个编码器来将原始数据转换为有意义的表示。例如视觉编码器可以将CT或MRI转换为包含组织密度和解剖结构等属性的特征表示;语言编码器可以将诊断报告提取为可用于疾病分类的向量表示。

融合模块旨在将不同模态编码器提取的特征进行合并。跨注意力机制是各种融合形式中较为常用的方法,其通过学习模态间和模态内的关系来融合不同编码器的特征表示,以综合多模态信息提高模型在下游任务中的表现。

解码器旨在将融合模块生成的跨模态融合表示转换回适用于各种任务的高维输出。

如何构建医学基础模型

基础模型的构建通常是首先在大规模未标注数据集上进行预训练,然后在小规模标注数据集上进行模型适配。其中,预训练主要包括生成式预训练和对比式预训练两种自监督学习范式,模型适配主要包括零/少样本适配、线性探测以及指令微调三种方式。

在这里插入图片描述

生成式预训练的核心原理是训练模型重建或生成数据,从而学习数据的结构和特征。例如在自然语言处理中,GPT模型通过预测下一个词生成连贯的文本。生成式预训练通过重建或生成数据,帮助模型深入理解医学数据的复杂结构和特征,为临床诊断和研究提供了有力支持。

在这里插入图片描述

对比式预训练通过训练模型区分相似和不相似的输入样本,提升模型的模式识别能力。该方法的目标是最大化相似样本之间的距离(吸引正样本对),并最小化不相似样本之间的距离(排斥负样本对)。例如在医学影像中,来自同一患者的不同视角的影像或对应的影像和病理报告可构成正样本对,而来自不同患者的影像和报告则构成负样本对。对比学习可以应用于单一模态(如影像)内的表示,也可以跨模态进行,帮助模型实现图像与文本之间的对齐。

在这里插入图片描述

零/少样本适配是指模型在没有或仅使用少量任务特定标注数据的情况下,直接应用于新任务。例如基于CLIP(对比语言-图像预训练)预训练模型可以通过将分类任务转化为图像-文本匹配问题来实现图像分类的目的。

线性探测是指在预训练模型的基础上,仅调整模型的最后一层(通常是分类层)以适应新任务。这种方法保留了预训练模型的绝大部分参数,仅对最后一层进行微调。

指令微调是指预训练模型在由指令及其相应输出组成的数据集上进一步训练的微调方法。其目标是使模型理解并执行基于自然语言指令的各种任务。在此过程中,模型权重会被调整以最小化模型输出与预期结果之间的差异。微调后的模型可以通过思维链技术进一步引导其推理过程,从而提升模型的可解释性。

此外,基于人类反馈的强化学习可以通过奖励机制进一步训练模型,使其生成符合人类偏好或特定目标的输出。但由于需要耗费大量人力,这种技术在医学基础模型的构建过程中并不常用。

医学基础模型的应用

近期Nature、Radiology等高水平期刊发表了不少基础模型结合临床应用的文章,大致包括辅助诊断、增强患者沟通、诊断报告生成、流程简化等方向。这些内容相信大家已经了解很多,本文就不再赘述了。

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!

你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

点击领取:2025最新最全AI大模型资料包:学习路线+书籍+视频+实战+案例…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值