《The book of why》读书笔记(一)–导言:思维胜于数据
本人刚上研究生半年,老师给了一个方向是因果推断。论文看了大半学期,说实话也没太看懂。而且因果推断的论文好多都有推导,一遇到推导就懵逼了。所以就决心拜读一下大牛Judea Pearl的因果推断入门书《The book of why》。然后在这里,我将分享一下我读这本书的读书笔记。我是按书中的章节来分享的,问中红色字为书中的原文,而黑色字是我自己的一些想法。如果大家对问中内容有其他间接,欢迎评论!
1.在我看来,阻碍因果推断这一科学诞生的最大障碍,是我们用以提出因果问题的词汇和我们用以交流科学理论的传统词汇之间的鸿沟。\color{#FF3030}{1.在我看来,阻碍因果推断这一科学诞生的最大障碍,是我们用以提出因果问题的词汇和我们用以交流科学理论的传统词汇之间的鸿沟。}1.在我看来,阻碍因果推断这一科学诞生的最大障碍,是我们用以提出因果问题的词汇和我们用以交流科学理论的传统词汇之间的鸿沟。
- 如何使用科学的方法来表示语言化的因果问题是一个重要的问题)如何表示因果关系是一个很大的可进行研究的问题
2.在我看来,阻碍因果推断这一科学诞生的最大障碍,是我们用以提出因果问题的词汇和我们用以交流科学理论的传统词汇之间的鸿沟。\color{#FF3030}{2.在我看来,阻碍因果推断这一科学诞生的最大障碍,是我们用以提出因果问题的词汇和我们用以交流科学理论的传统词汇之间的鸿沟。}2.在我看来,阻碍因果推断这一科学诞生的最大障碍,是我们用以提出因果问题的词汇和我们用以交流科学理论的传统词汇之间的鸿沟。
3.因果关系演算法由两种语言组成:其一为因果图,用以表达我们已知的事物,其二为类似代数的符号语言,用以表达我们想知道的事物。\color{#FF3030}{3.因果关系演算法由两种语言组成:其一为因果图,用以表达我们已知的事物,其二为类似代数的符号语言,用以表达我们想知道的事物。}3.因果关系演算法由两种语言组成:其一为因果图,用以表达我们已知的事物,其二为类似代数的符号语言,用以表达我们想知道的事物。
- 现在多用因果图来表达因果关系。
- 因果图表达的是已知事物,符号语言表达的是未知事物,说明这两者之间是有区别的,要注意这一点。
4.注意P(L∣D)与P(L∣do(d))是完全不同的。观察到(seeing)与进行干预(doing)有本质的区别。\color{#FF3030}{4.注意P(L|D)与P(L|do(d))是完全不同的。观察到(seeing)与进行干预(doing)有本质的区别。}4.注意P(L∣D)与P(L∣do(d))是完全不同的。观察到(seeing)与进行干预(doing)有本质的区别。
- 因果与关联的分歧也正在于此。提出了intervention或者是treatment的概念。
5.因果革命最重要的成果之一就是解释了如何在不实际实施干预的情况下预测干预的结果。\color{#FF3030}{5.因果革命最重要的成果之一就是解释了如何在不实际实施干预的情况下预测干预的结果。}5.因果革命最重要的成果之一就是解释了如何在不实际实施干预的情况下预测干预的结果。
- 如果不引入do算子,则永远无法实现这样的预测。
6.反事实的概念。预测无法进行实验或者说是实施了无法实施的干预后产生的结果。\color{#FF3030}{6.反事实的概念。预测无法进行实验或者说是实施了无法实施的干预后产生的结果。}6.反事实的概念。预测无法进行实验或者说是实施了无法实施的干预后产生的结果。
- 反事实是一种人独有的思考世界的方式。
7.因果推断引擎,帮助未来的人工智能进行因果推断。
(Pearl的SCM模型,他认为该模型可以解决所有因果问题)
(由于我没有该书的电子版,所以图只能用拍的了emmmm…)
(1)研究者所拥有的大部分知识都隐藏于他的大脑,只有假设能将其公之于众,也只有假设才能被嵌入模型。\color{#FF3030}{(1)研究者所拥有的大部分知识都隐藏于他的大脑,只有假设能将其公之于众,也只有假设才能被嵌入模型。}(1)研究者所拥有的大部分知识都隐藏于他的大脑,只有假设能将其公之于众,也只有假设才能被嵌入模型。
- 所拥有的知识、经验如何用于推理模型,作者认为可以将其抽象为假设再进行应用。
(2)因果模型有多种表现形式,包括因果图、结构方程、逻辑语句等。\color{#FF3030}{(2)因果模型有多种表现形式,包括因果图、结构方程、逻辑语句等。}(2)因果模型有多种表现形式,包括因果图、结构方程、逻辑语句等。
(3)以因果模型的路径来表示的变量之间的听从模式通常会导向数据中某种显而易见的模式或相关关系。这些模式可被用于测试模型,因此也被称为“可验证的蕴涵”。\color{#FF3030}{(3)以因果模型的路径来表示的变量之间的听从模式通常会导向数据中某种显而易见的模式或相关关系。这些模式可被用于测试模型,因此也被称为“可验证的蕴涵”。}(3)以因果模型的路径来表示的变量之间的听从模式通常会导向数据中某种显而易见的模式或相关关系。这些模式可被用于测试模型,因此也被称为“可验证的蕴涵”。
- 我暂时对这一句话还难以理解。目前的理解是是使用数据与模型的拟合度来验证模型是否适用,而模型的适用性决定了推断出的方法的正确性。
(4)虽然被估量的表现形式是一个概率公式,但实际上它是一种方法,可以让我们根据我们所掌握的数据类型来回答因果问题。\color{#FF3030}{(4)虽然被估量的表现形式是一个概率公式,但实际上它是一种方法,可以让我们根据我们所掌握的数据类型来回答因果问题。}(4)虽然被估量的表现形式是一个概率公式,但实际上它是一种方法,可以让我们根据我们所掌握的数据类型来回答因果问题。
- 在因果推断引擎中,因果模型并不是直接用来获得因果问题的答案,而是要获得解决因果问题的方法。
- 我对因果推断引擎处理因果问题过程的理解是:
先将已有的知识抽象为若干假设,再利用这些假设构建因果模型。使用数据对因果模型的匹配度进行检验,如匹配度高则保留模型,否则需要重新建模。然后把问题与模型结合,判断该模型能否解决该问题,若不能则修改模型,若能则产生解决该因果问题的方法(被估量)。然后拿着被估量和数据去解决因果问题,产生估计值。
8.因果模型所具备而数据挖掘和机器学习所缺乏的另一个优势就是适应性。\color{#FF3030}{8.因果模型所具备而数据挖掘和机器学习所缺乏的另一个优势就是适应性。}8.因果模型所具备而数据挖掘和机器学习所缺乏的另一个优势就是适应性。
- 传统的机器学习方法在环境发生改变之后就需要重新训练模型。而环境的改变在大部分情况下是不会改变因果性的。因此因果推断方法是否可以代替迁移学习?