生成式人工智能AIGC

生成式人工智能依赖于数据驱动的模式识别与逻辑推理,但其缺乏人类的主观意识、情感和直觉等能力        

人工智能是人类发展新领域,人工智能技术的广泛应用对人类社会与文明走向产生了深远影响,全球人工智能治理成为攸关全人类命运的重要课题。 

       近年来,生成式人工智能突飞猛进式的发展很容易让人联想到通用人工智能的实现。那么,远远超越人类智能水平之上,并且具有自我意识的超级智能真的要成为现实了吗?瓦洛尔在其新近著作《人工智能之镜》中表示,人工智能不仅是一种技术工具,更是一面“镜子”,通过其运作机制和局限性,能够反映出人类认知与实践的本质和边界。生成式人工智能依赖于数据驱动的模式识别与逻辑推理,但其缺乏人类的主观意识、情感和直觉等能力。由此,人类智能与生成式人工智能有着本质区别,各有其优势与独特性,也各自存在认知偏差和局限性。生成式人工智能不仅是社会变革的重要驱动力,也是人类自我反思的重要媒介。未来,人类和生成式人工智能应当在界定各自动态边界和功能的前提下开展深度融合与协作,以推动人机文明迈入崭新形态。【引用:孟芳的论文】

AIGC搭建流程

AIGC(人工智能生成内容)系统的搭建和架构需结合技术栈、工具链及实战项目设计,以下是关键要点:

技术栈组成

AIGC系统通常包含文本生成(如LLM)、多模态路由、AI绘画(如SDXL)、视频合成(如FFmpeg)、音乐生成(如Jukebox)等模块,通过容器化部署实现快速迭代。 ‌ 

部署流程

  1. 基础环境准备‌:安装Linux系统及NVIDIA驱动,配置Docker环境;
  2. 镜像拉取‌:使用预训练模型镜像(如bixiang/aigc-all-in-one:latest);
  3. 启动服务‌:通过docker-compose.yml文件实现一键部署

如AgentScope架构

AgentScope是阿里开源的一款全新的多智能体协同的Multi-Agent应用框架,旨在帮助开发者更轻松地构建基于大语言模型的多智能体应用程序。它具有以下特点:

  1. 易用性:AgentScope注重易用性,为开发者提供了简洁明了的编程模式,丰富的语法工具和内置资源,使得编程多智能体应用程序变得更加轻松愉快。
  2. 鲁棒性:AgentScope集成了全面的服务级重试机制和规则性修正工具,以处理LLMs响应中的明显格式问题。此外,AgentScope还提供了可定制的容错配置,使开发者能够通过参数来自定义容错机制。
  3. 支持多模态数据:AgentScope支持多模态数据在对话呈现、消息传输和数据存储中的应用,通过统一的基于URL的属性来解耦多模态数据的传输和存储,从而最大限度地减少了消息在每个智能体内的复杂性。
  4. 分布式部署:针对分布式应用程序带来的额外编程难题和系统设计挑战,AgentScope也提供了支持。

构建过程

# 从GitHub上拉取AgentScope的源代码
git clone https://github.com/modelscope/agentscope.git
cd agentscope
# 针对本地化的multi-agent应用
pip install -e .

示例代码:

import agentscope
import os
openai_api_key = os.getenv('OPENAI_API_KEY')
# 一次性初始化多个模型配置
openai_cfg_dict = {
    "config_name": "openai_cfg", # A unique name for the model config.
    "model_type": "openai",         # Choose from "openai", "openai_dall_e", or "openai_embedding".
    "model_name": "gpt-3.5-turbo",   # The model identifier used in the OpenAI API, such as "gpt-3.5-turbo", "gpt-4", or "text-embedding-ada-002".
    "api_key": openai_api_key,       # Your OpenAI API key. If unset, the environment variable OPENAI_API_KEY is used.
}
agentscope.init(model_configs=[openai_cfg_dict])
from agentscope.agents import DialogAgent, UserAgent
# 创建一个对话智能体和一个用户智能体
dialogAgent = DialogAgent(name="assistant", model_config_name="openai_cfg", sys_prompt="You are a helpful ai assistant")
userAgent = UserAgent()
x = None
x = dialogAgent(x)
print("diaglogAgent: \n", x)
x = userAgent(x)
print("userAgent: \n", x)

### 生成式AI (AIGC) 技术原理 生成式人工智能(AIGC),作为一种前沿的人工智能分支,主要依赖于复杂的算法来创建新内容而非简单分类现有数据。这类技术的核心在于模拟人类创造过程的能力,能够依据给定的数据集学习并生成全新的实例。生成对抗网络(GANs)[^4] 和变分自编码器(VAEs) 是实现这一目标的关键工具之一。 这些模型通常由两部分组成:一个是负责生成样本的生成器;另一个是对抗性的判别器用于评估生成的结果是否逼真。两者相互竞争,在这个过程中不断提升彼此的表现直至达到理想状态。这种机制使得机器不仅能理解输入信息的本质特征还能创造出具有相似特性的全新对象或情景描述[^1]。 ### 应用场景 #### 自然语言处理(NLP) 在NLP领域内,AIGC被广泛应用于自动写作、聊天机器人开发等方面。例如,通过分析大量语料库中的模式,系统可以撰写新闻报道、故事甚至诗歌等文学作品。此外,借助深度神经网络的支持,虚拟助手现在也变得更加智能化,能更自然流畅地与用户互动交流[^3]。 #### 计算机视觉(CV) 对于CV而言,AIGC同样展现出巨大潜力。无论是从零开始创作艺术画作还是修复损坏的老照片,或是根据文字提示合成特定风格的艺术品,都离不开这项强大的技术支持。不仅如此,该技术还在视频编辑方面发挥了重要作用——比如实时替换背景、增强特效效果等等。 #### 商业应用及其他行业 除了上述两个热门方向外,其他多个行业中也能见到AIGC的身影。金融机构利用其进行风险预测建模;医疗保健部门则探索个性化治疗方案设计的可能性;娱乐产业更是积极尝试打造沉浸式的用户体验环境。随着研究不断深入和技术进步加快,预计未来会有更多创新应用场景涌现出来[^2]。 ### 发展趋势 展望未来,AIGC将继续沿着几个重要维度演进: - **跨学科融合**:与其他科学领域的交叉合作将进一步拓宽AIGC的应用边界; - **伦理考量加强**:面对日益增长的社会关注,确保公平性和透明度将成为开发者们优先考虑的因素之一; - **硬件加速支持**:专用芯片的研发有助于提升计算效率降低能耗成本,从而推动更大规模部署成为可能; - **多模态交互体验优化**:整合语音识别、手势控制等多种感知方式于一体,使人机沟通更加直观便捷[^5]。 ```python # Python代码示例展示了一个简单的GAN架构定义 import torch.nn as nn class Generator(nn.Module): def __init__(self, input_size=100, output_channels=3): super(Generator, self).__init__() # 定义生成器的具体结构... class Discriminator(nn.Module): def __init__(self, input_channels=3): super(Discriminator, self).__init__() # 定义判别器的具体结构... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奋力向前123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值