生成式人工智能依赖于数据驱动的模式识别与逻辑推理,但其缺乏人类的主观意识、情感和直觉等能力
人工智能是人类发展新领域,人工智能技术的广泛应用对人类社会与文明走向产生了深远影响,全球人工智能治理成为攸关全人类命运的重要课题。
近年来,生成式人工智能突飞猛进式的发展很容易让人联想到通用人工智能的实现。那么,远远超越人类智能水平之上,并且具有自我意识的超级智能真的要成为现实了吗?瓦洛尔在其新近著作《人工智能之镜》中表示,人工智能不仅是一种技术工具,更是一面“镜子”,通过其运作机制和局限性,能够反映出人类认知与实践的本质和边界。生成式人工智能依赖于数据驱动的模式识别与逻辑推理,但其缺乏人类的主观意识、情感和直觉等能力。由此,人类智能与生成式人工智能有着本质区别,各有其优势与独特性,也各自存在认知偏差和局限性。生成式人工智能不仅是社会变革的重要驱动力,也是人类自我反思的重要媒介。未来,人类和生成式人工智能应当在界定各自动态边界和功能的前提下开展深度融合与协作,以推动人机文明迈入崭新形态。【引用:孟芳的论文】
AIGC搭建流程
AIGC(人工智能生成内容)系统的搭建和架构需结合技术栈、工具链及实战项目设计,以下是关键要点:
技术栈组成
AIGC系统通常包含文本生成(如LLM)、多模态路由、AI绘画(如SDXL)、视频合成(如FFmpeg)、音乐生成(如Jukebox)等模块,通过容器化部署实现快速迭代。
部署流程
- 基础环境准备:安装Linux系统及NVIDIA驱动,配置Docker环境;
- 镜像拉取:使用预训练模型镜像(如
bixiang/aigc-all-in-one:latest
); - 启动服务:通过
docker-compose.yml
文件实现一键部署
如AgentScope架构
AgentScope是阿里开源的一款全新的多智能体协同的Multi-Agent应用框架,旨在帮助开发者更轻松地构建基于大语言模型的多智能体应用程序。它具有以下特点:
- 易用性:AgentScope注重易用性,为开发者提供了简洁明了的编程模式,丰富的语法工具和内置资源,使得编程多智能体应用程序变得更加轻松愉快。
- 鲁棒性:AgentScope集成了全面的服务级重试机制和规则性修正工具,以处理LLMs响应中的明显格式问题。此外,AgentScope还提供了可定制的容错配置,使开发者能够通过参数来自定义容错机制。
- 支持多模态数据:AgentScope支持多模态数据在对话呈现、消息传输和数据存储中的应用,通过统一的基于URL的属性来解耦多模态数据的传输和存储,从而最大限度地减少了消息在每个智能体内的复杂性。
- 分布式部署:针对分布式应用程序带来的额外编程难题和系统设计挑战,AgentScope也提供了支持。
构建过程
# 从GitHub上拉取AgentScope的源代码
git clone https://github.com/modelscope/agentscope.git
cd agentscope
# 针对本地化的multi-agent应用
pip install -e .
示例代码:
import agentscope
import os
openai_api_key = os.getenv('OPENAI_API_KEY')
# 一次性初始化多个模型配置
openai_cfg_dict = {
"config_name": "openai_cfg", # A unique name for the model config.
"model_type": "openai", # Choose from "openai", "openai_dall_e", or "openai_embedding".
"model_name": "gpt-3.5-turbo", # The model identifier used in the OpenAI API, such as "gpt-3.5-turbo", "gpt-4", or "text-embedding-ada-002".
"api_key": openai_api_key, # Your OpenAI API key. If unset, the environment variable OPENAI_API_KEY is used.
}
agentscope.init(model_configs=[openai_cfg_dict])
from agentscope.agents import DialogAgent, UserAgent
# 创建一个对话智能体和一个用户智能体
dialogAgent = DialogAgent(name="assistant", model_config_name="openai_cfg", sys_prompt="You are a helpful ai assistant")
userAgent = UserAgent()
x = None
x = dialogAgent(x)
print("diaglogAgent: \n", x)
x = userAgent(x)
print("userAgent: \n", x)