【COMSOL热应力仿真】

本文介绍了COMSOL中如何进行瞬态热应力仿真的原理,涉及平衡方程、几何方程、应变与应力的关系以及材料属性设定。实例演示了一个2mm×2mm正方形在温度变化下的形变计算,但遇到网格问题,引发关于仿真结果一致性疑问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

COMSOL热应力仿真

原理:瞬态情况下的平衡方程(不考虑阻尼系数和外部力f的影响)
ρ∂2u∂t2+Aσ=0 \rho\frac{\partial^2\mathbf{u}}{\partial t^2}+\mathbf{A}\mathbf{\sigma}=0 ρt22u+Aσ=0
考虑几何方程,表达式如下所示:
ε=Lu \mathbf{\varepsilon}=\mathbf{L}\mathbf{u} ε=Lu
其中:ε是应变向量,Α和L是微分算子
A=LT=∣∂∂x00∂∂y0∂∂z0∂∂y0∂∂x∂∂z00∂∂z0∂∂y∂∂x∣ \mathbf{A}=\mathbf{L}^\mathrm{T}=\begin{vmatrix}\frac\partial{\partial x}&0&0&\frac\partial{\partial y}&0&\frac\partial{\partial z}\\0&\frac\partial{\partial y}&0&\frac\partial{\partial x}&\frac\partial{\partial z}&\\0&0&\frac\partial{\partial z}&0&\frac\partial{\partial y}&\frac\partial{\partial x}\end{vmatrix} A=LT=x000y000zyx00zyzx
最后,考虑热应力方程:
σ=D(ε−εth) \mathbf{\sigma=D(\varepsilon-\varepsilon^{th})} σ=D(εεth)
这里,D表示弹性关系,具体表示为
D=E(T)(1+ν)(1−2ν)[1−ννν000ν1−νν000νν1−ν0000001−2ν200001−2ν20000001−2ν2] \mathbf{D}=\dfrac{E(T)}{(1+\nu)(1-2\nu)}\begin{bmatrix}1-\nu&\nu&\nu&0&0&0\\\nu&1-\nu&\nu&0&0&0\\\nu&\nu&1-\nu&0&0&0\\0&0&0&\dfrac{1-2\nu}{2}&0&0\\&&0&0&\dfrac{1-2\nu}{2}&0\\0&0&0&0&0&\dfrac{1-2\nu}{2}\end{bmatrix} D=(1+ν)(12ν)E(T)1ννν00ν1νν00νν1ν000000212ν000000212ν000000212ν
其中,杨氏模量用 E(T)E(T)E(T) 来表示,泊松比用 ν_{\nu}ν来表示。
因此,存在15个未知量
ε=[εxεyεzγxyγyzγzx]Tσ=[σxσyσzτxyτyzτzx]Tu=[uvw]T \begin{aligned} &\mathbf{\varepsilon}= \begin{bmatrix}\varepsilon_x&\varepsilon_y&\varepsilon_z&\gamma_{xy}&\gamma_{yz}&\gamma_{zx}\end{bmatrix}^T \\ &\mathbf{\sigma}= \begin{bmatrix}\sigma_{x}&\sigma_{y}&\sigma_{z}&\tau_{xy}&\tau_{yz}&\tau_{zx}\end{bmatrix}^{T} \\ &\mathbf{u}= \begin{bmatrix}u&v&w\end{bmatrix}^T \end{aligned} ε=[εxεyεzγxyγyzγzx]Tσ=[σxσyσzτxyτyzτzx]Tu=[uvw]T
常用方法:位移法求解,基本未知量为位移分量,通过仅含有位移分量的微分方程和边界条件求解出各位移分量,再由几何方程求出应变分量,进而用本构方程求出各个应力分量。

COMSOL仿真过程

面向问题:
所示2mm×2mm的平面正方形,假设物体均匀,物体的初始温 度和环境温度均为300K,将正方形的三条边设置为固定边界条件,即位移为0,正方 形的上边界设置为自由边界条件。x,y,z三个方向的剖分尺寸为0.0002m,计算网格 为10×10。物体的材料属性包括杨氏模量E=110 kpa,泊松比v=0.35 ,密度rho=8960 kg/m3,热膨胀系数alfa=17e-6(1/K)。
在物体上施加温度源,其时域表达式为T=300+20t2(0≤t≤5×10∧−9s) T=300+20t^2(0\leq t\leq5\times10^{\wedge}-9s) T=300+20t2(0t5×109s),计算平面 正方形在温度源作用下所发生的形变,在物体上边界中心取一个点作为观察点
在这里插入图片描述
流程:
(1)构建几何在这里插入图片描述
(2)添加热膨胀模块
在这里插入图片描述
(3)添加固定约束
在这里插入图片描述
(4)添加材料属性在这里插入图片描述
(5)瞬态研究(0,0.001ns,5ns),得到仿真结果
在这里插入图片描述
(6)仿真出现问题(位移与网格剖分有关系,设置单元网格为0.02mm之后,结果不一致):
在这里插入图片描述
非常的奇怪。按道理来说,位移应该能算出来固定的值,哪里出错了呢???

### 构建任务失败解决方案 当遇到 `Execution failed for task ':app:shrinkReleaseRes'` 错误时,这通常意味着资源压缩过程中出现了问题。此错误可能由多种原因引起,包括但不限于配置不正确、依赖冲突或特定于项目的其他因素。 #### 可能的原因分析 1. **ProGuard 或 R8 配置不当** ProGuard 和 R8 是用于优化和混淆代码以及减少 APK 大小的工具。如果这些工具的配置存在问题,可能会导致资源无法正常处理[^1]。 2. **重复资源** 如果项目中有多个模块定义了相同的资源名称,可能导致冲突并引发该错误。检查是否存在重名的 drawable、string 等资源文件[^2]。 3. **第三方库兼容性** 某些第三方库可能与当前使用的 Gradle 插件版本或其他库存在兼容性问题,从而影响到资源打包过程中的行为[^3]。 4. **Gradle 缓存问题** 有时旧缓存数据会干扰新编译的结果,尝试清理本地仓库和重新同步项目可以帮助排除此类潜在障碍[^4]。 #### 推荐的操作方法 为了有效解决问题,建议按照以下步骤逐一排查: ```bash # 清理项目构建目录 ./gradlew clean # 删除 .gradle 文件夹下的所有内容以清除缓存 rm -rf ~/.gradle/caches/ ``` 调整 `build.gradle` 中的相关设置也是一个重要环节: ```groovy android { ... buildTypes { release { minifyEnabled true // 是否启用代码缩减 shrinkResources true // 是否开启资源压缩 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro' // 尝试禁用 shrinkResources 来测试是否为资源压缩引起的错误 // shrinkResources false } } } ``` 此外,在 `proguard-rules.pro` 文件内添加必要的保留规则,防止关键类被意外移除: ```text -keep class com.example.yourpackage.** { *; } # 替换为你自己的包路径 -dontwarn androidx.**,com.google.** # 忽略警告信息 ``` 最后,确保所使用的 Android Studio 版本是最新的稳定版,并且已经应用了所有的补丁更新。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值