COMSOL热应力仿真
原理:瞬态情况下的平衡方程(不考虑阻尼系数和外部力f的影响)
ρ∂2u∂t2+Aσ=0 \rho\frac{\partial^2\mathbf{u}}{\partial t^2}+\mathbf{A}\mathbf{\sigma}=0 ρ∂t2∂2u+Aσ=0
考虑几何方程,表达式如下所示:
ε=Lu \mathbf{\varepsilon}=\mathbf{L}\mathbf{u} ε=Lu
其中:ε是应变向量,Α和L是微分算子
A=LT=∣∂∂x00∂∂y0∂∂z0∂∂y0∂∂x∂∂z00∂∂z0∂∂y∂∂x∣ \mathbf{A}=\mathbf{L}^\mathrm{T}=\begin{vmatrix}\frac\partial{\partial x}&0&0&\frac\partial{\partial y}&0&\frac\partial{\partial z}\\0&\frac\partial{\partial y}&0&\frac\partial{\partial x}&\frac\partial{\partial z}&\\0&0&\frac\partial{\partial z}&0&\frac\partial{\partial y}&\frac\partial{\partial x}\end{vmatrix} A=LT=∂x∂000∂y∂000∂z∂∂y∂∂x∂00∂z∂∂y∂∂z∂∂x∂
最后,考虑热应力方程:
σ=D(ε−εth) \mathbf{\sigma=D(\varepsilon-\varepsilon^{th})} σ=D(ε−εth)
这里,D表示弹性关系,具体表示为
D=E(T)(1+ν)(1−2ν)[1−ννν000ν1−νν000νν1−ν0000001−2ν200001−2ν20000001−2ν2] \mathbf{D}=\dfrac{E(T)}{(1+\nu)(1-2\nu)}\begin{bmatrix}1-\nu&\nu&\nu&0&0&0\\\nu&1-\nu&\nu&0&0&0\\\nu&\nu&1-\nu&0&0&0\\0&0&0&\dfrac{1-2\nu}{2}&0&0\\&&0&0&\dfrac{1-2\nu}{2}&0\\0&0&0&0&0&\dfrac{1-2\nu}{2}\end{bmatrix} D=(1+ν)(1−2ν)E(T)1−ννν00ν1−νν00νν1−ν00000021−2ν00000021−2ν00000021−2ν
其中,杨氏模量用 E(T)E(T)E(T) 来表示,泊松比用 ν_{\nu}ν来表示。
因此,存在15个未知量
ε=[εxεyεzγxyγyzγzx]Tσ=[σxσyσzτxyτyzτzx]Tu=[uvw]T \begin{aligned}
&\mathbf{\varepsilon}= \begin{bmatrix}\varepsilon_x&\varepsilon_y&\varepsilon_z&\gamma_{xy}&\gamma_{yz}&\gamma_{zx}\end{bmatrix}^T \\
&\mathbf{\sigma}= \begin{bmatrix}\sigma_{x}&\sigma_{y}&\sigma_{z}&\tau_{xy}&\tau_{yz}&\tau_{zx}\end{bmatrix}^{T} \\
&\mathbf{u}= \begin{bmatrix}u&v&w\end{bmatrix}^T
\end{aligned} ε=[εxεyεzγxyγyzγzx]Tσ=[σxσyσzτxyτyzτzx]Tu=[uvw]T
常用方法:位移法求解,基本未知量为位移分量,通过仅含有位移分量的微分方程和边界条件求解出各位移分量,再由几何方程求出应变分量,进而用本构方程求出各个应力分量。
COMSOL仿真过程
面向问题:
所示2mm×2mm的平面正方形,假设物体均匀,物体的初始温 度和环境温度均为300K,将正方形的三条边设置为固定边界条件,即位移为0,正方 形的上边界设置为自由边界条件。x,y,z三个方向的剖分尺寸为0.0002m,计算网格 为10×10。物体的材料属性包括杨氏模量E=110 kpa,泊松比v=0.35 ,密度rho=8960 kg/m3,热膨胀系数alfa=17e-6(1/K)。
在物体上施加温度源,其时域表达式为T=300+20t2(0≤t≤5×10∧−9s) T=300+20t^2(0\leq t\leq5\times10^{\wedge}-9s) T=300+20t2(0≤t≤5×10∧−9s),计算平面 正方形在温度源作用下所发生的形变,在物体上边界中心取一个点作为观察点
流程:
(1)构建几何
(2)添加热膨胀模块
(3)添加固定约束
(4)添加材料属性
(5)瞬态研究(0,0.001ns,5ns),得到仿真结果
(6)仿真出现问题(位移与网格剖分有关系,设置单元网格为0.02mm之后,结果不一致):
非常的奇怪。按道理来说,位移应该能算出来固定的值,哪里出错了呢???