
工业检测
SilenceHell
学生,希望能在csdn上学到知识。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
C++图像细化实现
转载于:零的博客转载是防止原博主删除,找不到,阅读请移步原博客。 图像细化细化技术:把一个平面区域简化成图的结构形状表示法骨架:一种细化结构,它是目标的重要拓扑描述,具有非常广泛的应用。在图像识别或数据压缩时,经常用细化结构。例如:在识别字符之前,往往要先对字符作细化处理,求出字符的细化结构。细化的作用:目的将图像的骨架提取出来的同时,保持图像细小部分的连通性,对被处理的图像进行细化有助于突出形状特点和减少冗余信息量。 细化算法细化算法:采取逐次去除边界的方法进行的,不能转载 2021-06-02 16:07:16 · 1681 阅读 · 0 评论 -
HOG描述子的使用
转载于:(1 << -1) - 1的博客转载过来就乱码,希望原作者千万别删帖。转载 2021-05-08 10:40:18 · 399 阅读 · 0 评论 -
图像旋转
转载于:andylan_zy 一般角度旋转,我们会这样做: 先用getRotationMatrix2D()来计算二维旋转变换矩阵, 再用warpAffine()来进行仿射变换 对于需90°或-90°旋转,如果我们也这样做: Mat src = imread("E:/TestImg/t1.jpg"); Mat dst; Point center(src.cols/2,src.rows/2); //旋转中心 double angle = -90.0;转载 2021-04-19 10:54:53 · 508 阅读 · 0 评论 -
matlab fminsearch的原理及使用
优化方法采用:Nelder–Mead算法主要用于没有办法求导数的问题的优化问题。使用:密斯特杨的知乎转载 2021-04-13 14:44:17 · 2969 阅读 · 0 评论 -
二维坐标系的转换
转载于:漠刀凡尘的博客老是忘记变换矩阵,尤其是相互转换时的符号问题,转载过来方便查看,侵删。二维坐标系的变换分为旋转变换和平移变换。一、旋转变换假设已知基坐标系XOY中的一点P(x,y),坐标原点为O,绕点O旋转θ,可以求得点P在新坐标系X'OY'中坐标值(x',y'),如下图所示:求解x'和y'的关键是坚持用已知的边做斜边来求解,结合上图利用三角函数可以求得:x'=x·cos(θ)+y·sin(θ)y'=y·cos(θ)-x·sin(θ)那么点P在X'OY'中的坐标值为(x',y')。转载 2021-04-10 15:40:12 · 2308 阅读 · 0 评论 -
最小二乘法拟合圆
转载于:liyuanbhu的博客不知道为什么转载过来全是乱码,这里仅给出链接。转载 2021-04-08 13:44:07 · 349 阅读 · 0 评论 -
计算两个对应点集之间的变换矩阵
实现方法:棕熊的肚皮1公式推导:棕熊的肚皮2转载过来公式全是乱的!转载 2021-04-06 10:54:40 · 2736 阅读 · 0 评论