计算机视觉系列 -MMDetection 之MobileNetV2YOLOV3 经典算法(一)

本文介绍了MMDetection框架中MobileNetV2结合YOLOV3的经典算法,详细解析了配置文件的修改,包括输入尺寸、anchor设置、neck和head的通道数调整,以及训练参数的优化。通过减少模型计算量和参数量,实现性能与效率的平衡。同时,分享了MobileNetV2-YOLOV3在不同尺寸下的精度表现,并链接了相关学习笔记资源,涵盖MMDetection的整体构建流程和更多计算机视觉算法的深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机视觉系列 -MMDetection 之MobileNetV2YOLOV3 经典算法(一)

YOLO 是工业界应用非常广泛的算法, MMDetection 提供了 MobileNetV2-YOLOV3 的配置文件和预训练模型

yolov3_mobilenetv2 配置文件

mmdetection-2.25.0/configs/yolo/yolov3_mobilenetv2_mstrain-416_300e_coco.py

_base_ = '../_base_/default_runtime.py'
# model settings
model = dict(
    type='YOLOV3',
    backbone
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值