LoRA三种不同训练流程在配置和保存权重的差异
调整大小的嵌入层 vs 需保存的模块
若你将嵌入层(embedding layer)添加到 modules_to_save(需保存模块列表)中,它会如预期般被保存。若你对嵌入层进行大小调整(第 4 节课将详细讲解此操作),系统会自动检测到这一变化,嵌入层同样会被保存,但不会被添加到 modules_to_save 列表中。之后查看已保存的配置时,嵌入层不会在列表中显示,即便 .safetensors 文件里包含了已保存的嵌入层参数。
PEFT(参数高效微调)工具
PEFT会使用 get_peft_model_state_dict() 工具函数构建一个字典,该字典仅包含必须保存的层和模块:适配器(adapters)、需保存模块列表(modules_to_save 中的内容),以及调整过大小的嵌入层(无论其是否在需保存模块列表中)。
三种训练流程
以下代码展示了三种不同训练流程在配置和保存权重上的差异:
仅使用适配器(需保存模块列表为空)、
将 embed_tokens(词嵌入模块)加入需保存模块列表,
以及对嵌入层进行大小调整(需保存模块列表为空):
from safetensors