LoRA三种不同训练流程在配置和保存权重的差异(64)

调整大小的嵌入层 vs 需保存的模块

若你将嵌入层(embedding layer)添加到 modules_to_save(需保存模块列表)中,它会如预期般被保存。若你对嵌入层进行大小调整(第 4 节课将详细讲解此操作),系统会自动检测到这一变化,嵌入层同样会被保存,但不会被添加到 modules_to_save 列表中。之后查看已保存的配置时,嵌入层不会在列表中显示,即便 .safetensors 文件里包含了已保存的嵌入层参数。

PEFT(参数高效微调)工具

PEFT会使用 get_peft_model_state_dict() 工具函数构建一个字典,该字典仅包含必须保存的层和模块:适配器(adapters)、需保存模块列表(modules_to_save 中的内容),以及调整过大小的嵌入层(无论其是否在需保存模块列表中)。

三种训练流程

以下代码展示了三种不同训练流程在配置和保存权重上的差异:

仅使用适配器(需保存模块列表为空)、

将 embed_tokens(词嵌入模块)加入需保存模块列表,

以及对嵌入层进行大小调整(需保存模块列表为空):

from safetensors
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值