TensorFlow的get_shape()函数和num_elements() 函数

本文深入探讨了TensorFlow中get_shape()和num_elements()函数的使用,通过实例代码展示了如何获取张量的维度和计算元素总数,以及如何利用这些信息进行张量重塑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天学习图像数组转置的时候,遇到get_shape()、num_elements()函数。

经查,get_shape()函数的功能和array的shape属性一样,都是可以得到张量(数组)的维度,如下是TesnorFlow的get_shape()源码(..\Lib\site-packages\tensorflow\python\ops\variables.py):

  def get_shape(self):
    """Alias of Variable.shape."""
    return self.shape

num_elements()函数返回数组的总元素个数,具体是通过数组各维度的乘积实现的,源码如下(..\Lib\site-packages\tensorflow\python\framework\tensor_shape.py):

  def num_elements(self):
    """Returns the total number of elements, or none for incomplete shapes."""
    if self.is_fully_defined():
      size = 1
      for dim in self._dims:
        size *= dim.value
      return size
    else:
      return None

好了,上代码,如下是做的一个验证:

import tensorflow as tf

a = tf.zeros([3, 4, 5, 6], tf.int32)
print(a)
print('----------')
b = a.get_shape()
e = a.shape
c = b[1:4].num_elements()
d = tf.reshape(a, [-1, c])

init_op = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init_op)
    print(a.eval())
    print('----------')
    print(b)
    print('----------')
    print(e)
    print('----------')
    print(c)
    print('----------')
    print(d.eval())

结果:

'''
a为维度为(3, 4, 5, 6)的张量
'''
Tensor("zeros_11:0", shape=(3, 4, 5, 6), dtype=int32)
----------
'''
a = tf.zeros([3, 4, 5, 6], tf.int32)
维度为(3, 4, 5, 6)的全零张量
'''
[[[[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]]


 [[[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]]


 [[[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]

  [[0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]
   [0 0 0 0 0 0]]]]
----------
'''
b = a.get_shape()
返回a的维度
'''
(3, 4, 5, 6)
----------
'''
e = a.shape
类似于a.get_shape()
'''
(3, 4, 5, 6)
----------
'''
b[1:4]
对(3, 4, 5, 6)数组进行切片。可以取到索引1,不可以取到索引4;
.num_elements()
返回切片后的数组总元素数,4 * 5 * 6 = 120
'''
120
----------
'''
d = tf.reshape(a, [-1, c])
按照[-1, 120]的维度,改变a张量的形状。
a张量一共3 * 4 * 5 * 6 = 360个元素,所以这里的“-1”代表3,
重新生成的d的形状应该是(3, 120)
'''
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0]]

 

def main(): t0 = time.time() ​ # 选择模型 model = build_lstm_model() ​ # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) ​ # 训练模型 checkpoint = ModelCheckpoint('model_checkpoint.h5', save_weights_only=True, verbose=1, save_freq='epoch') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=[checkpoint]) ​ # 评估模型 loss, accuracy = model.evaluate(x_test, y_test) print(f"Test Loss: {loss}, Test Accuracy: {accuracy}") ​ t1 = time.time() print(f"模型运行的时间为:{t1 - t0:.2f} 秒") ​ if __name__ == '__main__': main() 10秒 WARNING:tensorflow:From /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/initializers.py:118: calling RandomUniform.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1623: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. NotImplementedError: Cannot convert a symbolic Tensor (lstm/strided_slice:0) to a numpy array. --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) Cell In[21], line 24 21 print(f"模型运行的时间为:{t1 - t0:.2f} 秒") 23 if __name__ == '__main__': ---> 24 main() Cell In[21], line 5, in main() 2 t0 = time.time() 4 # 选择模型 ----> 5 model = build_lstm_model() 7 # 编译模型 8 model.compile(optimizer=tf.keras.optimizers.Adam(0.001), 9 loss=tf.keras.losses.BinaryCrossentropy(), 10 metrics=['accuracy']) Cell In[15], line 4, in build_lstm_model() 3 def build_lstm_model(): ----> 4 model = keras.Sequential([ 5 layers.Embedding(total_words, embedding_len, input_length=max_review_len), 6 layers.LSTM(64, return_sequences=False), 7 layers.Dense(1, activation='sigmoid') 8 ]) 9 return model File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/training/tracking/base.py:457, in no_automatic_dependency_tracking.<locals>._method_wrapper(self, *args, **kwargs) 455 self._self_setattr_tracking = False # pylint: disable=protected-access 456 try: --> 457 result = method(self, *args, **kwargs) 458 finally: 459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/engine/sequential.py:113, in Sequential.__init__(self, layers, name) 111 tf_utils.assert_no_legacy_layers(layers) 112 for layer in layers: --> 113 self.add(layer) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/training/tracking/base.py:457, in no_automatic_dependency_tracking.<locals>._method_wrapper(self, *args, **kwargs) 455 self._self_setattr_tracking = False # pylint: disable=protected-access 456 try: --> 457 result = method(self, *args, **kwargs) 458 finally: 459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/engine/sequential.py:195, in Sequential.add(self, layer) 190 self.inputs = layer_utils.get_source_inputs(self.outputs[0]) 192 elif self.outputs: 193 # If the model is being built continuously on top of an input layer: 194 # refresh its output. --> 195 output_tensor = layer(self.outputs[0]) 196 if len(nest.flatten(output_tensor)) != 1: 197 raise TypeError('All layers in a Sequential model ' 198 'should have a single output tensor. ' 199 'For multi-output layers, ' 200 'use the functional API.') File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:623, in RNN.__call__(self, inputs, initial_state, constants, **kwargs) 617 inputs, initial_state, constants = _standardize_args(inputs, 618 initial_state, 619 constants, 620 self._num_constants) 622 if initial_state is None and constants is None: --> 623 return super(RNN, self).__call__(inputs, **kwargs) 625 # If any of `initial_state` or `constants` are specified and are Keras 626 # tensors, then add them to the inputs and temporarily modify the 627 # input_spec to include them. 629 additional_inputs = [] File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/engine/base_layer.py:854, in Layer.__call__(self, inputs, *args, **kwargs) 852 outputs = base_layer_utils.mark_as_return(outputs, acd) 853 else: --> 854 outputs = call_fn(cast_inputs, *args, **kwargs) 856 except errors.OperatorNotAllowedInGraphError as e: 857 raise TypeError('You are attempting to use Python control ' 858 'flow in a layer that was not declared to be ' 859 'dynamic. Pass `dynamic=True` to the class ' 860 'constructor.\nEncountered error:\n"""\n' + 861 str(e) + '\n"""') File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:2548, in LSTM.call(self, inputs, mask, training, initial_state) 2546 self.cell.reset_dropout_mask() 2547 self.cell.reset_recurrent_dropout_mask() -> 2548 return super(LSTM, self).call( 2549 inputs, mask=mask, training=training, initial_state=initial_state) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:681, in RNN.call(self, inputs, mask, training, initial_state, constants) 675 def call(self, 676 inputs, 677 mask=None, 678 training=None, 679 initial_state=None, 680 constants=None): --> 681 inputs, initial_state, constants = self._process_inputs( 682 inputs, initial_state, constants) 684 if mask is not None: 685 # Time step masks must be the same for each input. 686 # TODO(scottzhu): Should we accept multiple different masks? 687 mask = nest.flatten(mask)[0] File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:798, in RNN._process_inputs(self, inputs, initial_state, constants) 796 initial_state = self.states 797 else: --> 798 initial_state = self.get_initial_state(inputs) 800 if len(initial_state) != len(self.states): 801 raise ValueError('Layer has ' + str(len(self.states)) + 802 ' states but was passed ' + str(len(initial_state)) + 803 ' initial states.') File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:605, in RNN.get_initial_state(self, inputs) 603 dtype = inputs.dtype 604 if get_initial_state_fn: --> 605 init_state = get_initial_state_fn( 606 inputs=None, batch_size=batch_size, dtype=dtype) 607 else: 608 init_state = _generate_zero_filled_state(batch_size, self.cell.state_size, 609 dtype) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:2313, in LSTMCell.get_initial_state(self, inputs, batch_size, dtype) 2312 def get_initial_state(self, inputs=None, batch_size=None, dtype=None): -> 2313 return list(_generate_zero_filled_state_for_cell( 2314 self, inputs, batch_size, dtype)) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:2752, in _generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype) 2750 batch_size = array_ops.shape(inputs)[0] 2751 dtype = inputs.dtype -> 2752 return _generate_zero_filled_state(batch_size, cell.state_size, dtype) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:2768, in _generate_zero_filled_state(batch_size_tensor, state_size, dtype) 2765 return array_ops.zeros(init_state_size, dtype=dtype) 2767 if nest.is_sequence(state_size): -> 2768 return nest.map_structure(create_zeros, state_size) 2769 else: 2770 return create_zeros(state_size) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/util/nest.py:536, in map_structure(func, *structure, **kwargs) 532 flat_structure = [flatten(s, expand_composites) for s in structure] 533 entries = zip(*flat_structure) 535 return pack_sequence_as( --> 536 structure[0], [func(*x) for x in entries], 537 expand_composites=expand_composites) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/util/nest.py:536, in <listcomp>(.0) 532 flat_structure = [flatten(s, expand_composites) for s in structure] 533 entries = zip(*flat_structure) 535 return pack_sequence_as( --> 536 structure[0], [func(*x) for x in entries], 537 expand_composites=expand_composites) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/keras/layers/recurrent.py:2765, in _generate_zero_filled_state.<locals>.create_zeros(unnested_state_size) 2763 flat_dims = tensor_shape.as_shape(unnested_state_size).as_list() 2764 init_state_size = [batch_size_tensor] + flat_dims -> 2765 return array_ops.zeros(init_state_size, dtype=dtype) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/ops/array_ops.py:2338, in zeros(shape, dtype, name) 2334 if not isinstance(shape, ops.Tensor): 2335 try: 2336 # Create a constant if it won't be very big. Otherwise create a fill op 2337 # to prevent serialized GraphDefs from becoming too large. -> 2338 output = _constant_if_small(zero, shape, dtype, name) 2339 if output is not None: 2340 return output File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/ops/array_ops.py:2295, in _constant_if_small(value, shape, dtype, name) 2293 def _constant_if_small(value, shape, dtype, name): 2294 try: -> 2295 if np.prod(shape) < 1000: 2296 return constant(value, shape=shape, dtype=dtype, name=name) 2297 except TypeError: 2298 # Happens when shape is a Tensor, list with Tensor elements, etc. File <__array_function__ internals>:180, in prod(*args, **kwargs) File /opt/conda/lib/python3.8/site-packages/numpy/core/fromnumeric.py:3088, in prod(a, axis, dtype, out, keepdims, initial, where) 2970 @array_function_dispatch(_prod_dispatcher) 2971 def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, 2972 initial=np._NoValue, where=np._NoValue): 2973 """ 2974 Return the product of array elements over a given axis. 2975 (...) 3086 10 3087 """ -> 3088 return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, 3089 keepdims=keepdims, initial=initial, where=where) File /opt/conda/lib/python3.8/site-packages/numpy/core/fromnumeric.py:86, in _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs) 83 else: 84 return reduction(axis=axis, out=out, **passkwargs) ---> 86 return ufunc.reduce(obj, axis, dtype, out, **passkwargs) File /opt/conda/lib/python3.8/site-packages/tensorflow_core/python/framework/ops.py:735, in Tensor.__array__(self) 734 def __array__(self): --> 735 raise NotImplementedError("Cannot convert a symbolic Tensor ({}) to a numpy" 736 " array.".format(self.name)) NotImplementedError: Cannot convert a symbolic Tensor (lstm/strided_slice:0) to a numpy array.
最新发布
06-22
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值