【Python】Dash简单介绍

Dash是一个基于FlaskPoltly.js以及React.js的Python框架,由plotly公司开发,设计之初是为了帮助数据分析人员进行快速的数据可视化网页搭建。现时Dash已经是一个相当成熟的框架,拥有丰富的社区资源与生态。

1、简单介绍

由于Dash是基于Flask框架建立的,其运行方式与执行逻辑和Flask是大同小异的。但Flask需要自己处理前后端的连接,且对前端后端知识有一定的了解,这对数据人员来说并不友好。Dash则将前端后端集成在一起,只需写简单的回调就能实现交互功能。

1.1 安装

pip install dash

安装后即可构建一个Dash应用了!现在来创建一个小的Dash应用。

# app.py
from dash import Dash, html

app = Dash(__name__)
app.layout = [html.Div('Hello world!')]

if __name__ == '__main__':
    app.run_server()

可以看到终端返回了一些信息,Dash应用在本地主机上运行,端口默认8050。在run_server()设置参数port可更改端口,可设置debug=True切换debug模式。

开启debug模式后每修改一次代码后Dash应用会自动重启更新,遇上错误后中断当前应用。

# app.py
from dash import Dash, html

app = Dash(__name__)
app.layout = [html.Div('Hello world!')]

if __name__ == '__main__':
    app.run_server(debug=True)

开启debug模式后,Dash应用的右下方出现蓝色logo。展开logo会有三个按钮,第一个按钮展示Dash应用中的回调信息,包括回调关系、回调加载时间等;第二个按钮Errors反映的是程序错误信息,比如回调错误;第三个按钮Server则是显示当前Dash应用的运行状态,绿色表示正常运行,红色表示出错终止。

1.2 应用架构

Dash应用的架构如下:

+ dashProject/
   + asset/
      + css/
      + img/
      + js/
       • favicon.ico
   + callbacks/
   + models/
   + views/
    • app.py
    • server.py
   + pages/  

文件夹assets存放前端文件,callbacks存放回调函数,models存放数据模型文件,views为视图文件, pages存放不同的页面文件。Dash自动读取相应的文件夹进行相应的操作,可以根据自己的实际需要对架构进行调整。

1.3 基本概念

Dash应用基本上是由两部分组成:布局(Layout)和回调(Callback)。布局负责页面的外观,回调则赋予了应用交互性。

1.3.1 布局

布局规定Dash页面的外观,规定哪一块区域具体放什么内容、怎么排版等。layout 由一棵“组件”树组成,利如 html.Div ,dcc.Graph

app.layout = [
    html.Div('Hello world!'),
    html.Div('1'),
    html.Div('2'),
    html.Div('3'),
]

一个好看的网页往往通常需要编写css、js文件,但使用Dash元素的初衷不就是因为不熟悉不想写繁琐的前端代码吗,所以调用Dash的第三方拓展库dash_bootstrap_components就可以大大减少前端页面设计工作。dash-bootstrap-components不包含css,这是为了让您可以自由地选择任何的Bootstrap v5样式表,实现想要的外观。

import dash_bootstrap_components as dbc
import dash


app = dash.Dash(
    __name__,
    # 用于引入外部的css,有了这部分网页才有更多样的形式
    external_stylesheets=[dbc.themes.BOOTSTRAP],
    # 可以填入css文件
    # external_stylesheets=['css/bootstrap.min.css'],
)

if __name__ == '__main__':
    app.run_server()

上面的准备工作完成以后,接下来开始学习构造页面布局。

  • Container、Row、Col

首先要了解的是组件Container,它是我们组织页面元素的容器。一个元素的尺寸和位置经常受其容器(Container)的影响。容器都被划分为四个区域,内容区(Content)、内边距区(Padding)、边框区(Margin)和外边框区(Border)。要修改Content、Padding、Margin、Border的样式,可设置style参数,见下面例子。

代码样式

实际上,参数style对应的就是css文件,也可以通过写css文件对元素样式进行修改。

Container()之内,我们就可以按照bootstrap的网格系统进行内容的排布:行(Row)嵌套列(Col),再向嵌套各种部件。Bootstrap提供了一套响应式、移动设备优先的流式网格系统,随着屏幕尺寸的增加,系统会自动分为最多 12 列。我们可以根据自己的需要定义列数,由于Bootstrap网格系统是响应式的, 列会根据屏幕大小自动重新排列,需要确保每一行中列的总和小于等于12且列数为正整数。

app.layout = dbc.Container(
    [
        dbc.Row([
            dbc.Col(style={'background-color': 'lightgrey', 'height': 100}, width=1),
            dbc.Col(style={'background-color': 'red', 'height': 100}, width=2),
            dbc.Col(style={'background-color': 'blue', 'height': 100}, width=3),
            dbc.Col(style={'background-color': 'green', 'height': 100}, width=4),
            dbc.Col(style={'background-color': 'black', 'height': 100}, width=2),
        ]),
        dbc.Row([
            dbc.Col(style={'background-color': '#cbd933', 'height': 100}),
            dbc.Col(style={'background-color': '#6b6882', 'height': 100}),
        ]),
    ]
)

  • 设置水平对齐方式

在实际排版中,很多页面布局需求中需要对于同一行的多个列元素设置对齐方式,可以通过对Row()设置参数justify来实现,可选项有'start''center''end''between'以及'around'五种,每种产生的效果如下面的例子:

app.layout = dbc.Container(
    [
        dbc.Row([
            dbc.Col('1', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('2', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('3', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
        ], justify='start'),
        html.Hr(),
        dbc.Row([
            dbc.Col('1', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('2', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('3', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
        ], justify='center'),
        html.Hr(),
        dbc.Row([
            dbc.Col('1', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('2', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('3', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
        ], justify='end'),
        html.Hr(),
        dbc.Row([
            dbc.Col('1', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('2', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('3', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
        ], justify='between'),
        html.Hr(),
        dbc.Row([
            dbc.Col('1', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('2', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
            dbc.Col('3', style={'border-color': 'black', 'border-style': 'solid'}, width=2),
        ], justify='around'),
    ]
)

1.3.2 回调

Dash最大的优点之一就是其高度封装了React.js,使得我们无需编写js代码即可实现前端与后端之间的异步交互,为了实现这一步,我们需要使用到dash.dependencies中的InputOutput,再配合自定义回调函数来实现所需交互功能。当输入组件的属性发生更改时,Dash会自动调用这些函数,以更新另一个组件(输出)中的某些属性。

from dash import Dash, html, dcc, Input, Output, callback
import dash_bootstrap_components as dbc

app = Dash(__name__,
           external_stylesheets=[dbc.themes.BOOTSTRAP]
           )
app.layout = html.Div([
    html.H6("输入一些内容:"),
    html.Div([
        "输入: ",
        dcc.Input(id='my-input', type='text', placeholder='输入')
    ]),
    html.Br(),
    html.Div(id='my-output'),
])


@callback(
    Output(component_id='my-output', component_property='children'),
    Input(component_id='my-input', component_property='value')
)
def update_output_div(input_value):
    return f'输出: {input_value}'


if __name__ == '__main__':
    app.run_server(debug=True)

在 Dash 中,@callback被用于定义回调函数。@callback装饰器指定了回调函数update_output_div,当Input组件中的值发生变化它将被触发。Output定义了回调函数的输出,它指示输出到Output组件的属性;Iutput定义了回调函数的输入,表示回调函数接收来自属性的输入。参数component_id指的是元素的id,component_property指的是元素的属性。例子里面的Input(component_id='my-input', component_property='value'),即在id为my-input的组件处接收value;Output(component_id='my-output', component_property='children')即在id为my-output的组件处输出children。下面再举多个例子方便理解吧:

例1     在id为year-slider处接收value,在id为graph-with-slider处返回figure。图片将根据选择的年份进行更新。

from dash import Dash, dcc, html, Input, Output, callback
import plotly.express as px

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv')

app = Dash(__name__)

app.layout = html.Div([
    dcc.Graph(id='graph-with-slider'),
    dcc.Slider(
        df['year'].min(),
        df['year'].max(),
        step=None,
        value=df['year'].min(),
        marks={str(year): str(year) for year in df['year'].unique()},
        id='year-slider'
    )
])


@callback(
    Output('graph-with-slider', 'figure'),
    Input('year-slider', 'value'))
def update_figure(selected_year):
    filtered_df = df[df.year == selected_year]

    fig = px.scatter(filtered_df, x="gdpPercap", y="lifeExp",
                     size="pop", color="continent", hover_name="country",
                     log_x=True, size_max=55)

    fig.update_layout(transition_duration=500)

    return fig


if __name__ == '__main__':
    app.run_server(debug=True)

上面例子说明component_property可以是children、figure等,常用的属性有value、children、figure、n_clicks等。
例2  编写一个dash应用,实现用户每点击一次按钮,更新点击按钮的最新时间。
from dash import html, Dash, callback, Output, Input
from datetime import datetime


app = Dash(
    __name__
)

app.layout = html.Div(
    [
        html.Button(id='btn', children='点击'),
        html.Div(id='click-time')
    ]
)


@callback(
    Output('click-time', 'children'),
    Input('btn', 'n_clicks')
)
def update(n_clicks):
    return '最近点击时间' + str(datetime.now())


if __name__ == '__main__':
    app.run_server()

2 常用组件和元素

2.1 html组件

2.1.1 概要

在构建前端页面的过程中,可以使用dash下的html模块(dash.html),无需编写HTML或使用HTML模板引擎。下面是一个简单的html结构实例:

from dash import html

html.Div([
    html.H1('Hello Dash'),
    html.Div([
        html.P('Dash converts Python classes into HTML'),
        html.P("This conversion happens behind the scenes by Dash's JavaScript front-end")
    ])
])

以上代码会在您的web应用程序中转换为以下HTML:

<div>
    <h1>Hello Dash</h1>
    <div>
        <p>Dash converts Python classes into HTML</p>
        <p>This conversion happens behind the scenes by Dash's JavaScript front-end</p>
    </div>
</div>

在HTML组件中,有style、class、id等属性用来调整页面风格,这些属性都能在dash中调整。HTML元素和Dash参数基本相同,但有一些关键区别:

  • style属性是一个dict
  • style中的属性采用骆驼命名法
  • HTML里的class,与dash里的className(或class_name)相对应
  • 像素单位的样式属性可以仅作为数字提供,而不需要像素单位px
     

下面给出一个直观的例子:

from dash import html

html.Div([
    html.Div('Example Div', style={'color': 'blue', 'fontSize': 14}),
    html.P('Example P', className='my-class', id='my-p-element')
], style={'marginBottom': 50, 'marginTop': 25})

上述代码将对应下面的html:

<div style="margin-bottom: 50px; margin-top: 25px;">

    <div style="color: blue; font-size: 14px">
        Example Div
    </div>

    <p class="my-class", id="my-p-element">
        Example P
    </p>

</div>

Dash的HTML组件有一个n_clicks属性,它是一个整数,表示元素被点击的次数。您可以使用n_clicks触发回调,并在回调逻辑中使用n_click的值。在下面例子中,我们从id为click-div的html.Div中捕获n_clicks值,并输出到id为click-output的html.P元素。n_clicks使用事件监听器来捕获元素上的用户点击事件,并递增n_clicks值。

from dash import Dash, html, Input, Output, callback

app = Dash(__name__)

app.layout = html.Div(
    [
        html.Div(
            "Div with n_clicks event listener",
            id="click-div",
            style={"color": "red", "font-weight": "bold"},
        ),
        html.P(id="click-output"),
    ]
)


@callback(
    Output("click-output", "children"),
    Input("click-div", "n_clicks")
    )
def click_counter(n_clicks):
    return f"The html.Div above has been clicked this many times: {n_clicks}"


app.run(debug=True)

2.1.2 常用标签

由于不同类的属性名称定义都是类似的,除特殊属性外以下不再赘述(详细属性说明与用法见官方文档Dash for Python Documentation)。

①常用属性:

  • children:此组件的子组件,可选
  • id:组件的id,用于标识回调中的dash组件。id需要在应用程序中的所有组件中都是唯一的。
  • n_clicks:一个整数,表示此元素被点击的次数,默认为0
  • href:链接资源的url
  • media:指定链接资源所针对的媒体的提示
  • className:通常与css一起使用,为具有公共属性的元素设置样式
  • style:定义css样式,这些样式将覆盖之前设置的样式
  • title:将鼠标悬停在元素上时在工具提示中显示的文本

②常用标签:

dash组件html标签用法
html.A<a><a> 标签定义超链接,用于从一个页面链接到另一个页面。<a> 元素最重要的属性是 href 属性,它指定链接的目标。
html.B<b>用于定义粗体的文本
html.Br<br>换行
html.Button<button>定义一个按钮
html.Div<div>

定义 HTML 文档中的一个分隔区块或者一个区域部分。<div>标签常用于组合块级元素,以便通过 CSS 来对这些元素进行格式化。<div> 元素经常与 CSS 一起使用,用来布局网页。

html.Footer<footer>定义文档或者文档的一部分区域的页脚
html.Form<form>创建供用户输入的 HTML 表单
html.Header<header>定义文档或者文档的一部分区域的页眉
html.H1-html.H6<h1>-<h6>

<h1> - <h6> 标签被用来定义 HTML 标题。

<h1> 定义重要等级最高的标题。<h6> 定义重要等级最低的标题。

html.Hr<hr>定义 HTML 页面中的主题变化(比如话题的转移),并显示为一条水平线
html.I<i>斜体文本
html.Iframe<iframe>

规定一个内联框架。一个内联框架被用来在当前 HTML 文档中嵌入另一个文档。

html.Img<img>

定义 HTML 页面中的图像

html.Li<li>定义列表项目
html.Nav<nav>定义导航链接的部分
html.P<p>定义段落
html.Progress<progress>定义运行中的任务进度(进程)
html.Script<script>定义客户端脚本
html.Span<span>用于对文档中的行内元素进行组合
html.Table<table>表格
html.Tbody<tbody>用于组合 HTML 表格的主体内容
html.Td<td>定义 HTML 表格中的标准单元格
html.Tfoot<tfoot>用于组合 HTML 表格的页脚内容
html.Th<th>定义 HTML 表格中的表头单元格
html.Thead<thead>用于组合 HTML 表格的表头内容
html.Tr<tr>定义 HTML 表格中的行
html.Ul<ul>定义无序列表

2.1.3 一些应用

import dash
from dash import html


app = dash.Dash(
    __name__,
)
app.layout = html.Div(
    [
        html.Header('Home'),
        html.H1('Good Morning!'),
        html.Button('点击', id='input-click'),
        html.Hr(),
        html.A('跳转百度', href='www.baidu.com'),
        html.Br(),
        html.Nav(
            html.Ol(
                [
                    html.Li('Bikes'),
                    html.Li('BMX'),
                ]
            ),
        ),
        html.Table(
            [
                html.Caption('Front-end web developer course 2021'),
                html.Thead(
                    [
                        html.Tr(
                            [
                                html.Th('Person', scope='col'),
                                html.Th('Most interest in', scope='col'),
                                html.Th('Age', scope='col'),
                            ]
                        ),
                    ]
                ),
                html.Tbody(
                    [
                        html.Tr(
                            [
                                html.Th('Chris', scope='row'),
                                html.Td('HTML tables'),
                                html.Td('22'),
                            ]
                        ),
                        html.Tr(
                            [
                                html.Th('Dennis', scope='row'),
                                html.Td('Web accessibility'),
                                html.Td('45'),
                            ]
                        ),
                        html.Tr(
                            [
                                html.Th('Sarah', scope='row'),
                                html.Td('Javascript frameworks'),
                                html.Td('22'),
                            ]
                        ),
                    ]
                ),
                html.Tfoot(
                    [
                        html.Tr(
                            [
                                html.Th('Average', scope='row', colSpan='2'),
                                html.Td('33'),
                            ]
                        ),
                    ]
                ),
            ]
        ),
    ]
)


if __name__ == '__main__':
    app.run(port=5001, debug=True)

2.2 核心组件

2.2.1 概要

dash的核心组件模块(dash-core-component)封装了前端常用的交互式组件,包括下拉菜单、按钮、滑块等。引入方式:

from dash import dcc
# import dash_core_component(旧的引入方式)

2.2.2 常用组件

① 选择框(dcc.CheckList)

② 日期选择(dcc.DatePickerSingle)

③ 下载(dcc.Download)

常与Button一起使用

from dash import Dash, dcc, html, Input, Output, callback

app = Dash(__name__)
app.layout = html.Div([
    html.Button("Download Text", id="btn-download-txt"),
    dcc.Download(id="download-text")
])


@callback(
    Output("download-text", "data"),
    Input("btn-download-txt", "n_clicks"),
    prevent_initial_call=True,
)
def func(n_clicks):
    return dict(content="Hello world!", filename="hello.txt")


if __name__ == "__main__":
    app.run(debug=True)

④ 下拉菜单(dcc.Dropdown)

⑤ 图片(dcc.Graph)

Graph组件用于展示plotly图形,并用figure参数接收。

from dash import dcc, html, Dash
import plotly.express as px


app = Dash(
    __name__
)
server = app.server
df = px.data.iris()
fig = px.scatter(df, x='sepal_width', y='sepal_length')


app.layout = html.Div(
    [
        dcc.Graph(figure=fig)
    ]
)

if __name__ == '__main__':
    app.run_server()

⑥ 滑块(dcc.Slider)

⑦ 分页(dcc.Tabs、dcc.Tab)

<think>好的,我需要帮助用户解决如何使用Python Dash结合Plotly.js创建可网络访问的API接口和可视化图表的问题。用户之前的问题是关于后端生成API和前端用Plotly.js显示图表,现在转向了使用Dash框架。我需要结合之前的回答和提供的引用内容,特别是引用[1]、[2]、[3]中的Dash和Plotly的信息。首先,用户的需求是使用Dash创建可视化图表并生成API接口。根据引用[1],Dash是基于Flask、Plotly.js和React.js的,允许用纯Python构建Web应用。因此,我需要说明如何搭建环境,创建Dash应用,同时集成Plotly图表,并添加API接口。接下来,我需要考虑如何将API接口集成到Dash应用中。由于Dash本身基于Flask,可以像常规Flask应用一样添加路由,但需要确保不影响Dash的主路由。例如,在同一个Flask服务器上,可以定义多个路由,其中一个是Dash应用,另一个是API接口。引用[1]提到Dash允许使用纯Python构建,所以可能需要通过Flask的实例来添加API路由。然后,关于数据可视化部分,用户需要结合Plotly.js生成图表。根据引用[3],Plotly的plotly.express和graph_objects模块可以创建图表,然后通过Dash的组件渲染到前端。需要展示如何在Dash布局中添加Graph组件,并绑定数据。另外,用户可能关心如何将数据传递给API,以及如何从API获取数据来更新图表。可能需要使用Dash的回调函数,当API数据变化时,触发图表的更新。同时,需要考虑数据格式的兼容性,比如使用JSON格式传输数据,确保前后端数据解析正确。性能方面,引用中提到数据压缩和Web Workers,但在Dash中可能需要不同的优化策略,比如使用缓存、减少数据量或增量更新。不过用户的问题主要是创建API和图表,可能需要先完成基础功能,再考虑优化。最后,需要验证步骤是否正确,包括环境安装、代码示例是否有误,以及如何测试API和图表是否正常工作。例如,访问API端点是否返回正确的JSON数据,Dash应用是否显示交互式图表。 现在,我需要将这些思考整理成结构化的步骤,确保代码示例正确,并符合用户提供的系统指令,如数学公式的格式和引用标注。同时,生成相关问题,帮助用户深入探索。</think>### 基于Python Dash的可视化与API接口开发指南 #### 一、环境搭建与基础架构 1. **安装核心库** 使用pip安装Dash与Plotly: ```bash pip install dash plotly ``` Dash基于Flask构建,自动集成Plotly.js渲染引擎[^1] 2. **应用结构设计** Dash应用采用声明式布局,通过`dash.Dash`类创建: ```python import dash from dash import html, dcc, Input, Output import plotly.express as px app = dash.Dash(__name__) ``` #### 二、API接口开发 1. **Flask路由扩展** Dash底层使用Flask,可直接添加API端点: ```python @app.server.route('/api/data') def get_api_data(): return {'x': [1,2,3], 'y': [4,5,6]} # 返回JSON格式API数据[^1] ``` 2. **数据序列化规范** 采用Plotly兼容的数据结构: $$ \text{Data} = \{x: [t_1, t_2, ..., t_n], y: [v_1, v_2, ..., v_n]\} $$ #### 三、可视化集成 1. **图表组件嵌入** 使用`dcc.Graph`组件绑定Plotly图表: ```python app.layout = html.Div([ dcc.Graph(id='live-graph'), dcc.Interval(id='interval', interval=1*1000) # 每秒更新 ]) ``` 2. **动态数据绑定** 通过回调函数实现数据更新: ```python @app.callback( Output('live-graph', 'figure'), Input('interval', 'n_intervals') ) def update_graph(n): data = requests.get('http://localhost:8050/api/data').json() return px.line(data, x='x', y='y') # 生成Plotly图表[^3] ``` #### 四、完整实现示例 ```python # app.py import dash from dash import html, dcc, Input, Output import plotly.express as px import requests app = dash.Dash(__name__) # API接口 @app.server.route('/api/signal') def generate_signal(): import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) return {'x': x.tolist(), 'y': y.tolist()} # 可视化布局 app.layout = html.Div([ html.H1("实时信号监控"), dcc.Graph(id='signal-plot'), dcc.Interval(id='refresh', interval=1000) ]) # 回调逻辑 @app.callback( Output('signal-plot', 'figure'), Input('refresh', 'n_intervals') ) def update_plot(n): response = requests.get('http://localhost:8050/api/signal') data = response.json() return px.line(data, x='x', y='y', title='动态正弦波') if __name__ == '__main__': app.run_server(debug=True) ``` #### 五、关键技术解析 1. **双服务架构** $$ \text{系统架构} = \underbrace{\text{Dash可视化层}}_{前端交互} + \underbrace{\text{Flask API层}}_{后端服务} $$ 2. **数据流优化** 采用分块传输编码提升实时性: ```python @app.server.route('/stream') def data_stream(): def generate(): while True: yield f"data:{json.dumps(new_data)}\n\n" return Response(generate(), mimetype='text/event-stream') ``` #### 六、部署与测试 1. **本地运行** ```bash python app.py # 访问 http://localhost:8050 ``` 2. **API验证** 使用curl测试接口: ```bash curl http://localhost:8050/api/signal ``` #### 七、性能优化建议 1. **数据压缩** 对传输数据应用gzip压缩: ```python from flask_compress import Compress Compress(app.server) ``` 2. **缓存机制** 使用`lru_cache`缓存静态数据: ```python from functools import lru_cache @lru_cache(maxsize=32) def get_cached_data(param): return heavy_computation(param) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值