AI提示词30天入门培训计划
目标学员: 希望利用AI提升工作效率、创新能力和竞争力的职场人员。
核心模型: 将以 OpenAI (ChatGPT)、Deepseek为主要实训平台,并穿插介绍如 Midjourney 等图像生成模型的基本原理。
第一周:筑基篇 - 与AI对话的核心法则
Day 1: 破冰 - 认识你的AI伙伴
- 内容概要: AI模型是什么?LLM(大语言模型)基本原理浅析(用冰箱做菜比喻)。介绍ChatGPT、Claude、Copilot等界面。第一个提示词:“你好”。
- 实训案例:
- 分别向ChatGPT和Claude发送:“你好,请介绍一下你自己,并说说你擅长什么?”
- 对比两者的回答,直观感受不同模型的“性格”差异。
- 职场价值: 打破对AI的陌生感,学会访问和使用基础工具。
Day 2: 突破“垃圾进,垃圾出” - 清晰性(Clarity)
- 内容概要: 提示词的第一原则:指令清晰。避免模糊和二义性语言。使用具体名词和明确动词。
- 实训案例:
- 反面案例: “写点关于市场营销的东西。”
- 正面案例: “为一款新上市的低碳水化合物能量棒起草一篇300字左右的社交媒体推文,目标客户是健身爱好者。”
- 职场价值: 让AI直接产出可用的初稿,节省从零构思的时间。
Day 3: 提供背景信息 - 角色扮演(Role-Playing)
- 内容概要: 通过为AI设定一个“角色”,让它更精准地模拟特定领域的知识和语气。
- 实训案例:
- 普通提问: “如何应对客户投诉?”
- 角色扮演: “假设你是一名拥有10年经验的客户服务经理,专业且富有同理心。请为我起草一封回复客户关于产品延迟发货投诉的电子邮件。”
- 职场价值: 获得更专业、更符合场景的文案(邮件、报告、话术等)。
Day 4: 定义输出格式 - 结构化(Structuring)
- 内容概要: AI可以生成任何格式的内容。明确要求格式,能极大提升信息提取效率。
- 实训案例:
- 普通提问: “总结一下会议纪要的要点。”
- 结构化提问: “将以下会议记录总结成三个部分:1. 关键决策(bullet points) 2. 待办事项(表格形式,包含负责人和截止日期) 3. 下一步行动计划(编号列表)。”
- 职场价值: 直接生成PPT大纲、项目计划表、数据分析报告等结构化文档。
Day 5: 小步迭代 - 持续对话与修正
- 内容概要: AI并非一次就能给出完美答案。学习如何通过追问、修正和补充来迭代优化结果。
- 实训案例:
- 先让AI生成一份“工作总结”的初稿。
- 迭代1: “很好,请加入更多数据来支撑我的成绩,比如‘将效率提升了20%’。”
- 迭代2: “现在,语气显得更自信一些。”
- 迭代3: “最后,把它缩短到500字以内。”
- 职场价值: 掌握与AI协作的工作流,将其变为永不疲倦的初级助理。
Day 6: 综合小练习1 - 起草专业邮件
- 内容概要: 复习本周知识,完成一个综合任务。
- 实训案例: “你是某科技公司的项目经理。需要写一封邮件给客户,告知项目最新版本(v2.1)已上线,并附上更新日志(列举3个新功能),同时邀请他们参加下周的线上培训会。邮件要专业、友好。”
Day 7: 复习与反思
- 内容概要: 整理第一周的笔记,回顾成功和失败的案例。思考在工作中的哪些场景可以立即应用。
第二周:进阶篇 - 掌握核心提示框架
Day 8: 万能公式:CRISPE Framework (Course, Role, Insight, Statement, Personality, Experiment)
- 内容概要: 学习一个强大的结构化提示公式,确保提示词全面而精准。
- 实训案例: 使用CRISPE框架重写Day6的邮件任务:
- C (Capacity & Role): 你是一个专业的项目经理。
- R (Role): 负责与客户沟通。
- I (Insight): 客户是技术背景,关心细节和后续支持。
- S (Statement): 起草一封告知v2.1版本上线的邮件,包含更新日志和培训邀请。
- P (Personality): 专业、清晰、友好。
- E (Experiment): 以HTML格式输出。
Day 9: 思维链(Chain-of-Thought, CoT) prompting
- 内容概要: 让AI展示其推理过程,尤其适用于复杂问题、数学计算或逻辑推理。
- 实训案例:
- 普通提问: “公司年会上有100人,每5人需要一个 pizza,每个pizza被切成8片。一共需要多少个pizza?”
- CoT提问: “公司年会上有100人,每5人需要一个 pizza,每个pizza被切成8片。请一步步推理,计算一共需要多少个pizza。”
- 职场价值: 处理复杂数据报表、进行市场估算、校验方案逻辑时非常有用。
Day 10: 零样本(Zero-Shot)与少样本(Few-Shot) prompting
- 内容概要: 不提供例子(Zero-Shot) vs 提供1-3个例子(Few-Shot)。Few-Shot是教会AI你想要格式和风格的最强技巧。
- 实训案例(Few-Shot):
- 指令: “请将以下‘功能描述’转化为‘用户价值点’。”
- 示例1: 输入:“支持离线操作” -> 输出:“即使没有网络,您也能随时随地继续工作,不受干扰。”
- 示例2: 输入:“256位加密” -> 输出:“您的数据如同拥有银行金库级别的安全防护,私密无忧。”
- 现在,请转换: “一键自动备份功能”
- 职场价值: 快速统一团队文案风格、生成特定格式的数据(如JSON)、处理批量文本转换。
Day 11: 分隔符的使用
- 内容概要: 当需要向AI提供长文本或多个输入时,使用分隔符(如```, ”, —)来清晰区分指令、背景和待处理内容。
- 实训案例:
- “请总结以下会议记录的核心观点,并指出有争议的部分。
”[这里粘贴大段的会议记录文字]
- 职场价值: 处理长文档、代码、数据时保持指令的清晰度。
Day 12: 文本概括与信息提取
- 内容概要: AI是信息处理的利器。学习如何让它快速提炼文章主旨、提取关键信息。
- 实训案例: 找一篇行业新闻长文,提示AI:“用一段话概括这篇文章的核心论点,并从文中提取出提到的所有公司名称和主要人物,以表格形式列出。”
Day 13: 头脑风暴与创意生成
- 内容概要: 利用AI打破思维定式,生成创意点子、名称、方案等。
- 实训案例: “我们需要为一款针对Z世代的环保水瓶品牌起名。名字要 catchy,能体现环保和时尚感。请生成10个备选名字,并附上简单的解释。”
Day 14: 复习与反思
- 内容概要: 综合运用CRISPE、Few-Shot等技巧,完成一个复杂任务(如:为新产品生成一个市场推广策略大纲)。
第三周:应用篇 - 征服职场核心场景
Day 15: 公文与报告撰写
- 实训案例: “扮演一名市场分析师,基于[某季度]的[销售额增长20%,但客户投诉率上升5%]这一情况,起草一份给管理层的简短报告,包含现状、可能原因和2条初步建议。”
Day 16: 数据分析与解读
- 实训案例: “我这里有一组销售数据(虚拟一份CSV格式的数据),请分析哪个产品销量最好?哪个区域的增长率最高?并用一段话总结你的发现。”(可使用Copilot for Excel实训)
Day 17: 编程与脚本辅助
- 实训案例: “用Python写一个脚本,从一个文件夹里读取所有的.txt文件,并计算每个文件中单词‘error’出现的次数,最后输出一个汇总报告。”
Day 18: 幻灯片(PPT)制作辅助
- 实训案例: “为我即将向董事会做的‘2024年Q1项目复盘’汇报制作一个PPT大纲。包含8张幻灯片:封面、目录、业绩回顾、挑战分析、成功案例、经验教训、下一步计划、Q&A。”
Day 19: 跨模型体验 - 图像生成提示词基础(Midjourney/DALL-E)
- 内容概要: 介绍图像生成提示词的基本结构:主体+细节+风格+材质+构图+参数。
- 实训案例: “一只可爱的柯基犬在火星上穿着宇航服,电影感镜头,赛博朋克风格,4k,高清细节” – 在Midjourney或Copilot(设计器)中尝试。
Day 20: 客户服务与邮件模板
- 实训案例: “生成3个回复客户咨询‘产品价格是否有折扣’的邮件模板,语气分别为:1. 标准官方 2. 亲切友好 3. 极力挽留型。”
Day 21: 复习与反思
- 内容概要: 选择本周最感兴趣的一个场景,进行深度演练并产出可直接用于工作的成果。
第四周:精通篇 - 优化、自动化与集成
Day 22: 温度(Temperature)与顶层概率(Top-p)参数初探
- 内容概要: 了解如何通过调整这些高级参数来控制AI输出的随机性和创造性。
- 实训案例: 在OpenAI Playground中,对同一个提示词(如“写一首关于春天的诗”)分别设置低温度(0.2)和高温度(0.8),对比输出结果。
Day 23: 处理复杂任务 - 分解与分步提示
- 内容概要: 对于极其复杂的任务,学会将其分解为多个子任务,并通过多次对话或长提示词逐步完成。
- 实训案例: “第一步,帮我列出制定一个‘新产品上线社交媒体推广计划’的主要步骤。好的,现在针对第一步‘目标受众分析’,我们应该考虑哪些维度?”
Day 24: 构建你自己的提示词库
- 内容概要: 开始使用Notion、Excel或任何你喜欢的工具,将工作中验证有效的提示词模板化、库化。
- 实训案例: 创建一个“邮件提示词库”表格,包含列:场景、角色、指令、示例输出。
Day 25: AI工作流自动化(Zapier/Make.com简介)
- 内容概要: 了解如何通过自动化工具将AI连接到其他App(如Gmail, Slack, Notion),实现自动摘要、自动回复等。
- 实训案例: 构思一个场景:“每当我的邮箱收到带有‘会议记录’标题的邮件时,自动转发给ChatGPT进行摘要,并将摘要发回给我的Slack。”
Day 26: 模型间的差异与选择(ChatGPT vs Claude vs Copilot)
- 内容概要: 总结各模型强项。ChatGPT(创意、通用),Claude(长文本、逻辑、谨慎),Copilot(与Office生态集成)。
- 实训案例: 将同一段长文本分别发给Claude和ChatGPT,要求它们进行总结,对比结果的质量和速度。
Day 27: 伦理与偏见 - 做负责任的AI使用者
- 内容概要: 认识到AI可能存在的偏见和幻觉,培养批判性思维,对AI输出进行审核和校验。
- 实训案例: 让AI生成一段“描述一位理想CEO”的文字,分析其输出中是否隐含了性别、年龄或种族的刻板印象。
Day 28: 综合实战演练1 - 市场方案起草
- 实训案例: 从零开始,使用AI辅助完成一个完整的“线下咖啡馆周末促销活动”方案,包含活动主题、宣传文案、社交媒体帖子、成本估算表。
Day 29: 综合实战演练2 - 个人效率提升
- 实训案例: 用AI规划你下一周的工作,整理你上一个项目的经验教训,并为你的个人发展制定一个学习计划。
Day 30: 结业与展望
- 内容概要: 回顾30天所学。分享你最好的提示词案例。制定未来的AI学习计划。思考如何将AI深度融入你的职业生涯。
给学员的最终建议:
- 持续练习: 提示工程是肌肉记忆,必须天天练。
- 保持好奇: AI领域日新月异,保持学习心态。
- 分享交流: 与同事组建学习小组,分享优秀的提示词,共同进步。