
大模型面试题剖析
文章平均质量分 84
针对常见的大模型面试问题进行剖析与模拟
艾醒(AiXing-w)
一个摸鱼区的鸽子博主,佛系更新,可私信催更。欢迎大家来群里玩呀 :466120702
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大模型面试题剖析:Pre-Norm与Post-Norm的对比及当代大模型选择Pre-Norm的原因
在深度学习面试中,Transformer模型的结构细节和优化技巧是高频考点。其中,归一化技术(Normalization)的位置选择(Pre-Norm vs. Post-Norm)直接影响模型训练的稳定性,尤其是对于千亿参数级别的大模型。本文将结合梯度公式推导,对比两种技术的差异,并解析当代大模型偏爱Pre-Norm的核心原因。原创 2025-08-25 11:15:59 · 585 阅读 · 0 评论 -
大模型面试题剖析:模型微调和蒸馏核心技术拆解与考点梳理
在大模型求职面试的赛道上,模型微调和模型蒸馏是绕不开的核心技术考点。这两项技术,一个聚焦模型能力的精细打磨,一个着眼于知识迁移与效率优化,深刻影响着大模型在实际场景中的表现。下面,我们就从技术原理、面试考点等维度,深入拆解,助力大家在面试中精准应答 。原创 2025-08-24 17:56:32 · 411 阅读 · 0 评论 -
大模型面试题剖析:微调与 RAG 技术的选用逻辑
在大模型技术岗位面试里,“何时用微调技术,何时用 RAG 技术” 是高频考点。这不仅考察对两种技术的理解,更看能否结合场景权衡运用,下面结合要点深入分析。原创 2025-08-24 17:29:44 · 403 阅读 · 0 评论