论文阅读:Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics (AAAI-23)

Cheng, Y., Su, Y., Yu, Z., Liang, Y., Wong, K.-C., & Li, X. (2023). Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics. Proceedings of the AAAI Conference on Artificial Intelligence37(4), 5036-5044. https://doi.org/10.1609/aaai.v37i4.25631

Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics | Proceedings of the AAAI Conference on Artificial Intelligence


写在前面

这篇论文和上一篇论文阅读:ZINB-Based Graph Embedding Autoencoder for Single-Cell RNA-Seq Interpretations-CSDN博客

分享的论文有共同的通讯作者,具有一定的连贯性,因此放在一起学习。


摘要

细胞聚类是分析单细胞RNA测序(scRNA-seq)数据的关键步骤,它允许在单细胞水平上进行转录谱分析后对细胞异质性进行表征。最近,单细胞深度嵌入表示模型因其可以同时学习特征表示和聚类而受到青睐。然而,这些模型仍然面临着许多重大挑战,包括海量数据、普遍的dropout事件以及转录谱中复杂的噪声模式。

本文提出了一种名为单细胞深度嵌入融合表示(scDEFR)模型,它产生了一个深度嵌入融合表示,以学习包含基因水平转录组和细胞拓扑信息的融合异质潜在嵌入。首先逐层融合它们,以获得细胞间关系和转录组信息的压缩表示。然后,使用基于零膨胀负二项式模型(ZINB)的解码器来捕获数据的全局概率结构,以重构最终的基因表达信息。最后,通过同时集成聚类损失、交叉熵损失、ZINB损失和细胞图重构损失,scDEFR可以在联合互相监督策略下优化聚类性能,并从融合信息中学习潜在表示。论文对来自不同测序平台的 15 个单细胞RNA-seq 数据集进行了全面的实验,并证明了scDEFR相对于各种最先进方法的优越性。

写作动机

单细胞RNA测序(scRNA-seq)技术允许分析大量个体细胞的整个转录组,这对于表征细胞群体内的随机异质性并建立不同的发育轨迹至关重要,例如,免疫细胞。 (Papalexi和Satija 2018)。由于基因组覆盖的高度异质性和技术限制,scRNA-seq数据非常稀疏,其中95%的测量值为零(Grün,Kester和Van Oudenaarden 2014)。这些问题阻碍了依赖相似性度量的传统聚类方法的充分适用。基于自编码器AE的scRNA-seq聚类方法虽然解决了上述问题,但是缺少了对相邻细胞信息的分析利用,而基于图自编码器GAE的scRNA-seq聚类又会缺少关键的基因表达数据。因此,将两种方法进行融合,使得可以从基因表达矩阵和细胞图中同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值