
RAG
文章平均质量分 87
dundunmm
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【每天一个知识点】RAG还是微调?
RAG与微调的选择指南:RAG适合快速部署、动态知识更新和文档问答场景,优势在于低成本接入多源数据;微调则适用于风格化输出和复杂任务,能深度掌握知识但资源消耗大。实际应用中常采用混合模式(RAG+微调),前者提供扩展知识库,后者优化模型行为。决策需权衡数据特点、更新频率和资源投入,例如法律问答推荐RAG,而固定格式生成更适合微调。原创 2025-08-04 17:47:16 · 294 阅读 · 0 评论 -
【一天一个知识点】RAG遇见推理
"RAG遇见推理"探索了检索增强生成(RAG)框架与推理能力的融合。RAG通过检索外部知识增强生成能力,但缺乏系统推理。二者的结合可应用于司法推理、医疗诊断等场景,通过多跳检索、思维链提示等技术实现逻辑推演。未来研究包括推理数据集构建、多模态融合等方向,最终目标是让AI不仅能检索答案,还能给出逻辑解释。这一融合将提升大模型在复杂认知任务中的表现。原创 2025-08-02 23:40:45 · 403 阅读 · 0 评论 -
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(5)
摘要:本文系统综述了检索增强生成(RAG)技术的研究进展与未来方向。聚焦知识导向的RAG系统,文章提出了顶层架构框架,梳理了知识获取、嵌入、检索与生成等核心模块。重点探讨了八大前沿方向:图结构增强RAG(GraphRAG)、多模态RAG、个性化RAG、智能体型RAG、RAG与生成模型结合、边缘计算RAG、可信RAG以及评估体系发展。针对每个方向,分析了研究意义与现存挑战,如知识整合、多模态对齐、隐私保护、实时响应等问题。文章最后强调建立统一评估标准的重要性,为RAG在知识密集型应用中的发展提供系统指导。(1原创 2025-07-17 07:30:00 · 1753 阅读 · 0 评论 -
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(4)
本文综述了知识导向的检索增强生成(RAG)系统的评估策略与应用场景。评估部分分为有效性评估(查询与上下文相关性、上下文与回答连贯性、查询与回答一致性)和效率评估(延迟、吞吐量、资源利用率),介绍了多种评估框架和指标。应用场景部分展示了RAG在科研、金融、教育、医疗、法律和工业等领域的广泛应用,突出了其在提升信息检索准确性、生成内容相关性和任务处理效率方面的优势。文章强调RAG系统通过结合检索与生成能力,为各领域提供了更可靠、高效的解决方案。原创 2025-07-16 16:59:44 · 792 阅读 · 0 评论 -
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(3)
本文综述了知识导向的检索增强生成(RAG)的高级方法,重点探讨了RAG训练、多模态RAG、记忆型RAG和代理式RAG四大前沿方向。RAG训练部分比较了静态、单向引导和协同三种优化策略;多模态RAG分析了跨模态表示与理解的技术突破;记忆型RAG提出了隐式、显式和工作记忆的三层架构;代理式RAG则通过智能体实现动态决策优化。这些方法共同推动了RAG系统在复杂任务中的表现,使其具备更强的适应性、扩展性和智能化水平。(149字)原创 2025-07-15 21:39:15 · 1096 阅读 · 0 评论