小数据也有大未来,数据稀缺如何应用深度学习?

在数据稀缺的情况下,深度学习依然可行。通过建立简单基线模型、收集更多数据、微调预训练模型、数据扩充、使用余弦损失等方法,可以有效应对小数据集的深度学习挑战。此外,自动编码和领域先验知识也是提高性能的关键策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


全文共2420字,预计学习时长7分钟

来源:Pexels

有人说,深度学习是目前科技界最大的瓜,每个人都想分一块。

它承诺以最小代价的大数据解决最复杂的问题。但现在大家面对的普遍问题是:我们既不在谷歌工作也不在Facebook工作,数据很稀缺,还能利用深度学习吗?

 

答案是:能!

 

下面就和小芯一起看看如何在有限的数据下利用深度学习吧~

 

开始越简单越好

在讨论针对有限数据利用深度学习的方法之前,请先后退一步,从神经网络开始,建立一个简单的基线。用一些传统模型(如随机森林)进行实验通常不会花费很长时间。

 

这将帮助您评估深度学习的一些潜在提升,并为您的问题提供大量关于深度学习与其他方法之间权衡的见解。

 

得到更多的数据

这听起来可能很荒谬,但是你考虑过是否可以收集更多的数据吗?

 

有人会经常向公司提出这样的建议,但公司大多数的人都会觉得你好像疯了一样,这似乎十分出乎意料。

 

是的,投入时间和金钱去收集更多的数据是可以的。事实上,这往往是你最好的选择。例如,也许你正试图对稀有鸟类进行分类,但数据非常有限。几乎可以肯定地说,通过标记更多的数据,你将更容易解决这个问题。

 

不确定需要收集多少数据?尝试在添加额外数据时绘制学习曲线,并查看模型性能的变化。

 

微调

假设你现在有一个简单的基线模型,并且不能收集更多数据或者造价昂贵。此时最可靠、最正确的方法是利用预先训练好的模型,然后针对问题对模型进行微调。

来源:Pexels

微调的基本思路是选取一个非常大的数据集,希望它在某种程度上与你的域相似,然后训练一个神经网络,使用较小的数据集对这个预先训练好的网络进行微调。你可以在本文中了解更多信息。

 

对于图像分类问题,最常用的数据集是ImageNet。这个数据集包含数百万张类对象图片,因此可以用于很多类型的图像问题。它甚至包括动物,因此可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值