分析:
由题意易得出同余方程:
x + km ≡ y + kn (mod L);
化解方程得:
(n-m) * k ≡ x-y (mod L);
转化为一般方程得:
(n-m)k + Ls = x-y;
看成ax+by=c;
要求ax + by = c的整数解 x,首先,设d = gcd(a, b),方程两边同时除以d得到a/d * x + b/d * y = c/d,由于a是整除d的,b也是整除d的,而x、y都是整数解,所以要求c/d也是整数。如果c不整除d,就输出Impossible。不然的话,如果我们能求出ax0+by0=d的解x0和y0,那么两边乘以c/d即a(c/d * x0) + b(c/d * y0) = c,就可以得到原来方程的解x = (c/d * x0),y = (c/d * y0)。
代码如下:
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
ll ans,x1,y1;
ll exgcd(ll a,ll b,ll &x1, ll &y1)
{
if(!b)
{
x1=1;
y1=0;
return a;
}
ans=exgcd(b,a%b,x1,y1);
ll t=x1;
x1=y1;
y1=t-a/b*y1;
return ans;
}
int main()
{
ll n,m,x,y,l;
cin>>x>>y>>m>>n>>l;
ll b=n-m,a=x-y;
if(b<0)
{
b=-b;
a=-a;
}//处理负数
exgcd(b,l,x1,y1);
if(a%ans!=0)//判断方程有无解。
cout<<"Impossible";
else
cout<<((x1*(a/ans))%(l/ans)+(l/ans))%(l/ans);//处理负数
}