POJ1061青蛙的约会解题报告

本文详细解析了如何通过扩展欧几里得算法解决同余方程问题,介绍了算法步骤并提供了具体代码实现,适用于解决形如ax+by=c的整数解问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
分析:
由题意易得出同余方程:
x + km ≡ y + kn (mod L);
化解方程得:
(n-m) * k ≡ x-y (mod L);
转化为一般方程得:
(n-m)k + Ls = x-y;
看成ax+by=c;
要求ax + by = c的整数解 x,首先,设d = gcd(a, b),方程两边同时除以d得到a/d * x + b/d * y = c/d,由于a是整除d的,b也是整除d的,而x、y都是整数解,所以要求c/d也是整数。如果c不整除d,就输出Impossible。不然的话,如果我们能求出ax0+by0=d的解x0和y0,那么两边乘以c/d即a(c/d * x0) + b(c/d * y0) = c,就可以得到原来方程的解x = (c/d * x0),y = (c/d * y0)。
代码如下:

#include<iostream>
#include<cstdio>
#define ll long long 
using namespace std;
ll ans,x1,y1;

ll exgcd(ll a,ll b,ll &x1, ll &y1)
{
    if(!b)
    {
        x1=1;
        y1=0;
        return a;
    }
    ans=exgcd(b,a%b,x1,y1);
    ll t=x1;
    x1=y1;
    y1=t-a/b*y1;
    return ans;
}

int main()
{
    ll n,m,x,y,l;
    cin>>x>>y>>m>>n>>l;
    ll b=n-m,a=x-y;
    if(b<0)
    {
        b=-b;
        a=-a;
    }//处理负数 
    exgcd(b,l,x1,y1);
    if(a%ans!=0)//判断方程有无解。 
        cout<<"Impossible";
    else
        cout<<((x1*(a/ans))%(l/ans)+(l/ans))%(l/ans);//处理负数 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值