
深度学习
文章平均质量分 72
dwjf321
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络基础-价格分类案例
所谓的训练函数,指的是输入数据读取、送入网络、计算损失、更新参数的流程,该流程较为固定。我们使用的是多分类交叉生损失函数、使用 SGD 优化方法。该数据为二手手机的各个性能的数据,最后根据这些性能得到4个价格区间,作为这些二手手机售出的价格区间。需要注意的是: 在这个问题中,我们不需要预测实际价格,而是一个价格范围,它的范围使用 0、1、2、3 来表示,所以该问题也是一个分类问题。我们可以使用机器学习的方法来解决这个问题,也可以构建一个全连接的网络。使用训练好的模型,对未知的样本的进行预测的过程。原创 2025-01-16 16:09:02 · 783 阅读 · 0 评论 -
神经网络基础-正则化方法
在设计机器学习算法时希望在新样本上的泛化能力强。许多机器学习算法都采用相关的策略来减小测试误差,这些策略被统称为正则化。神经网络的强大的表示能力经常遇到过拟合,所以需要使用不同形式的正则化策略。目前在深度学习中使用较多的策略有范数惩罚DropOut特殊的网络层等,接下来我们对其进行详细的介绍。原创 2025-01-16 16:06:58 · 773 阅读 · 0 评论 -
神经网络基础-网络优化方法
梯度下降法是一种寻找使损失函数最小化的方法。从数学上的角度来看,梯度的方向是函数增长速度最快的方向,那么梯度的反方向就是函数减少最快的方向,所以有:其中,η是学习率,如果学习率太小,那么每次训练之后得到的效果都太小,增大训练的时间成本。如果,学习率太大,那就有可能直接跳过最优解,进入无限的训练中。解决的方法就是,学习率也需要随着训练的进行而变化。前向传播:指的是数据输入的神经网络中,逐层向前传输,一直到运算到输出层为止。原创 2025-01-11 16:06:54 · 1173 阅读 · 0 评论 -
神经网络基础-神经网络搭建和参数计算
神经网络的输入数据是为[batch_size, in_features]的张量经过网络处理后获取了[batch_size, out_features]的输出张量。在 pytorch 中定义深度神经网络其实就是层堆叠的过程,继承自。原创 2024-12-13 18:18:57 · 1244 阅读 · 0 评论 -
PyTorch基本使用-线性回归案例
我们使用 PyTorch 的各个组件来构建线性回归的实现。学习目标:掌握PyTorch构建线性回归模型相关API。原创 2024-12-11 18:12:29 · 515 阅读 · 0 评论 -
PyTorch基本使用-自动微分模块
训练神经网络时,最常用的算法就是反向传播。在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整。为了计算这些梯度,PyTorch 内置了名为。接下来我们使用这个结构进行自动微分模块的介绍。我们使用 backward 方法、grad 属性来实现梯度的计算和访问。学习目的:掌握自动微分模块的使用。当X为多维张量时梯度计算。当X为标量时梯度的计算。原创 2024-12-10 17:35:49 · 683 阅读 · 0 评论 -
PyTorch基本使用-张量的拼接操作
torch.cat()函数可以将两个张量根据指定的维度拼接起来,不改变维度数。学习目标:掌握torch.cat()使用。原创 2024-12-09 18:22:53 · 260 阅读 · 0 评论 -
PyTorch基本使用-张量的形状操作
transpose 函数可以实现交换张量形状的指定维度, 例如: 一个张量的形状为 (2, 3, 4) 可以通过 transpose 函数把 3 和 4。块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理,例如: 一个张量经过了。squeeze 函数删除形状为 1 的维度(降维),unsqueeze 函数添加形状为1的维度(升维)。学习目标:掌握reshape()、squeze()、unsqueeze()、transpose()permute 函数可以一次交换更多的维度。原创 2024-12-09 18:11:24 · 898 阅读 · 0 评论 -
PyTorch基本使用-张量的索引操作
在操作张量时,经常要去获取某些元素进行处理或者修改操作,在这里需要了解torch中的索引操作。原创 2024-12-08 20:29:37 · 719 阅读 · 0 评论 -
PyTorch基本使用-张量的基本运算及函数计算
张量的基本运算及函数原创 2024-12-08 18:23:07 · 601 阅读 · 0 评论 -
PyTorch基本使用-张量转换
使用torch.tensor()可以将ndarray数组转换为Tensor,不共享内存。函数可以将张量转换为ndarray数组,但是共享内存,可以使用。可以将ndarray数组转换为Tensor,共享内存。对于只有一个元素的张量,使用。函数将该值从张量中提取出来。原创 2024-12-08 17:55:00 · 720 阅读 · 0 评论 -
PyTorch基本使用-张量的创建
python的基本使用,创建张量原创 2024-12-08 16:06:05 · 1166 阅读 · 0 评论