【PyTorch】Normalization

本文探讨了在递归神经网络(RNN)中使用LayerNorm技术的优势及其适用性。相较于BatchNorm,LayerNorm更适合处理RNN中的动态网络,并且在RNN场景下表现出了较好的效果。然而,在CNN等其他场景下,LayerNorm的效果则不如BatchNorm或其他规范技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.LayerNorm

Geoffery Hinton
在这里插入图片描述
RNN 中的 LayerNorm
前文有述,BN 在 RNN 中用起来很不方便,而 Layer Normalization 这种在同隐层内计算统计量的模式就比较符合 RNN 这种动态网络,目前在 RNN 中貌似也只有 LayerNorm 相对有效,
但 Layer Normalization 目前看好像也只适合应用在 RNN 场景下,在 CNN 等环境下效果是不如 BatchNorm 或者 GroupNorm 等模型的。
从目前现状看,动态网络中的 Normalization 机制是非常值得深入研究的一个领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值