量子计算:原理、应用与未来展望
1. 量子门:量子计算的基础
逻辑门是量子计算和经典计算的核心组成部分,无论是经典逻辑门还是量子逻辑门,都是接收一组二进制输入(如 1 和 0,或自旋向上/向下的电子),并给出一个二进制输出:1(即自旋向上的电子)或两种叠加态之一。决定输出结果的是布尔函数,你可以将布尔函数看作是对“是/否”问题的响应规则。这些门组合成电路,电路再组合成 CPU 或其他计算组件。
为了更好地理解量子门,我们可以借助三维空间中的布洛赫球,它表示量子粒子(如电子自旋)沿相应轴的方向。量子门作用于量子比特,与经典门作用于 0 或 1 比特不同,这使得量子门能够利用叠加态(0 和 1 之间的其他状态)和纠缠态(关联两个量子比特以驱动结果)。
1.1 泡利门(Pauli Gates)
泡利门以沃尔夫冈·泡利(Wolfgang Pauli)命名,基于著名的泡利矩阵。它对于计算单个电子自旋的变化非常有用,如今的量子门通常使用电子自旋作为量子比特的首选属性。泡利门每次只作用于一个量子比特,表现为简单的 2x2 矩阵,每个矩阵只有 4 个元素。泡利门有三种类型:
- 泡利 - X 门(Pauli - X Gate) :类似于经典的非门,常被称为量子非门。当一个单量子比特向量的线性状态通过泡利 - X 门时,它会翻转到另一侧,例如从 |0⟩ 变为 |1⟩,反之亦然。
- 泡利 - Y 门(Pauli - Y Gate) :看起来与 X 门很相似,但左下角的 1 被 i(-1 的平方根)取代,右上角是 -i。当以电子形式存在的量子比特通过 Y 门时,它会在三维空间中自旋