Zilliz Cloud Pipelines 是一项强大的服务,使您能够将非结构化数据转换为可搜索的向量集合。通过将嵌入、摄取、搜索和删除数据的功能整合在一起,Zilliz Cloud Pipelines 可以大大简化数据处理工作流。本篇博客将向您展示如何配置和使用Zilliz Cloud Pipelines,并结合LangChain Retriever进行高效的文本检索。
核心原理解析
Zilliz Cloud Pipelines 将复杂的数据操作分解为一系列流水化操作,从而实现对数据的系统化管理和高效处理。其核心在于将数据转换为向量表示,以便于在向量空间中进行快速的相似性计算。
代码实现演示
首先,我们需要准备好Zilliz Cloud管道,以便与LangChain Retriever集成:
环境准备
%pip install --upgrade --quiet langchain-milvus
初始化 Zilliz Cloud Pipeline Retriever
下面的代码展示了如何初始化ZillizCloudPipelineRetriever
:
from langchain_milvus import ZillizCloudPipelineRetriever
# 初始化 Retriever 并配置所需的管道
retriever = ZillizCloudPipelineRetriever(
pipeline_ids={
"ingestion": "<YOUR_INGESTION_PIPELINE_ID>", # 文档添加管道
"search": "<YOUR_SEARCH_PIPELINE_ID>", # 文档搜索管道
"deletion": "<YOUR_DELETION_PIPELINE_ID>", # 文档删除管道
},
token="<YOUR_ZILLIZ_CLOUD_API_KEY>", # API密钥
)
其中,您需要用实际的管道ID和API密钥替换占位符。
文档添加
如果需要添加文本或文档,以下方法可供使用:
-
文本添加:
# retriever.add_texts( # texts = ["示例文本1", "示例文本2"], # metadata={"field_name": "field_value"} # 如果不需要元数据字段,可以跳过这行 # )
-
文档添加:
retriever.add_doc_url( doc_url="https://publicdataset.zillizcloud.com/milvus_doc.md", metadata={"version": "v2.3.x"}, )
该方法将指定的文档及其元数据添加到Zilliz Cloud存储中。
文档检索
要查询相关文档,可以使用get_relevant_documents
方法:
documents = retriever.get_relevant_documents(
"用户是否可以通过复杂的布尔表达式删除实体?"
)
for doc in documents:
print(doc.page_content)
该方法返回与查询相关的文档列表。
应用场景分析
Zilliz Cloud Pipelines特别适合需要快速、精准文本检索的场景,例如:
- 聊天机器人需要快速获取知识库中的信息。
- 文档管理系统中高效检索和更新文档。
- 实时分析系统中需要快速处理和搜索大量非结构化数据。
实践建议
- 稳定性:使用Zilliz Cloud的服务可以保证API调用的稳定性和响应速度。
- 安全性:确保您的API密钥不被泄露,并定期更新。
- 性能优化:定期管理和优化管道,以提高数据处理的效率。
如果遇到问题欢迎在评论区交流。
—END—