使用Zilliz Cloud管道实现高效文本检索

Zilliz Cloud Pipelines 是一项强大的服务,使您能够将非结构化数据转换为可搜索的向量集合。通过将嵌入、摄取、搜索和删除数据的功能整合在一起,Zilliz Cloud Pipelines 可以大大简化数据处理工作流。本篇博客将向您展示如何配置和使用Zilliz Cloud Pipelines,并结合LangChain Retriever进行高效的文本检索。

核心原理解析

Zilliz Cloud Pipelines 将复杂的数据操作分解为一系列流水化操作,从而实现对数据的系统化管理和高效处理。其核心在于将数据转换为向量表示,以便于在向量空间中进行快速的相似性计算。

代码实现演示

首先,我们需要准备好Zilliz Cloud管道,以便与LangChain Retriever集成:

环境准备

%pip install --upgrade --quiet langchain-milvus

初始化 Zilliz Cloud Pipeline Retriever

下面的代码展示了如何初始化ZillizCloudPipelineRetriever

from langchain_milvus import ZillizCloudPipelineRetriever

# 初始化 Retriever 并配置所需的管道
retriever = ZillizCloudPipelineRetriever(
    pipeline_ids={
        "ingestion": "<YOUR_INGESTION_PIPELINE_ID>",  # 文档添加管道
        "search": "<YOUR_SEARCH_PIPELINE_ID>",        # 文档搜索管道
        "deletion": "<YOUR_DELETION_PIPELINE_ID>",    # 文档删除管道
    },
    token="<YOUR_ZILLIZ_CLOUD_API_KEY>",  # API密钥
)

其中,您需要用实际的管道ID和API密钥替换占位符。

文档添加

如果需要添加文本或文档,以下方法可供使用:

  • 文本添加

    # retriever.add_texts(
    #     texts = ["示例文本1", "示例文本2"],
    #     metadata={"field_name": "field_value"}  # 如果不需要元数据字段,可以跳过这行
    # )
    
  • 文档添加

    retriever.add_doc_url(
        doc_url="https://publicdataset.zillizcloud.com/milvus_doc.md",
        metadata={"version": "v2.3.x"},
    )
    

    该方法将指定的文档及其元数据添加到Zilliz Cloud存储中。

文档检索

要查询相关文档,可以使用get_relevant_documents方法:

documents = retriever.get_relevant_documents(
    "用户是否可以通过复杂的布尔表达式删除实体?"
)
for doc in documents:
    print(doc.page_content)

该方法返回与查询相关的文档列表。

应用场景分析

Zilliz Cloud Pipelines特别适合需要快速、精准文本检索的场景,例如:

  • 聊天机器人需要快速获取知识库中的信息。
  • 文档管理系统中高效检索和更新文档。
  • 实时分析系统中需要快速处理和搜索大量非结构化数据。

实践建议

  • 稳定性:使用Zilliz Cloud的服务可以保证API调用的稳定性和响应速度。
  • 安全性:确保您的API密钥不被泄露,并定期更新。
  • 性能优化:定期管理和优化管道,以提高数据处理的效率。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值