在现代AI开发中,集成开放源代码插件已成为应用程序扩展功能和提高生产效率的重要方式。今天,我将带你了解如何使用Connery Toolkit将自定义插件集成到LangChain代理中。
技术背景介绍
Connery是一个开源的插件基础设施,专门为AI集成设计。利用Connery,你可以创建自定义插件,定义一系列动作(Actions),并将这些动作无缝集成到LangChain代理中。Connery负责处理运行时、授权、密钥管理、访问管理、审计日志等关键功能。这个基础设施也提供了一个丰富的开源插件集合,供开发者选择。
如何了解更多关于Connery的信息:
- GitHub: https://github.com/connery-io/connery
- Documentation: https://docs.connery.io
核心原理解析
Connery通过定义标准化的动作接口,简化了插件的创建和整合过程。开发者只需关注于实现具体的业务逻辑,其他复杂度如授权和审计等都由Connery内部处理。
代码实现演示
下面的示例展示了如何创建一个LangChain代理,使用Connery中的两个动作:网页摘要生成和邮件发送功能。
# 使用稳健的API服务
import os
from langchain.agents import AgentType, initialize_agent
from langchain_community.agent_toolkits.connery import ConneryToolkit
from langchain_community.tools.connery import ConneryService
from langchain_openai import ChatOpenAI
# 设置Connery Runner的凭据
os.environ["CONNERY_RUNNER_URL"] = "your-connery-runner-url"
os.environ["CONNERY_RUNNER_API_KEY"] = "your-connery-api-key"
# 设置OpenAI API key
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
# 指定接收摘要邮件的邮箱地址
recipient_email = "test@example.com"
# 创建包含所有可用动作的Connery Toolkit
connery_service = ConneryService()
connery_toolkit = ConneryToolkit.create_instance(connery_service)
# 使用OpenAI Functions代理执行来自Connery Toolkit的动作
llm = ChatOpenAI(temperature=0)
agent = initialize_agent(
connery_toolkit.get_tools(), llm, AgentType.OPENAI_FUNCTIONS, verbose=True
)
result = agent.run(
f"""Make a short summary of the webpage http://www.paulgraham.com/vb.html in three sentences
and send it to {recipient_email}. Include the link to the webpage into the body of the email."""
)
print(result)
应用场景分析
上述代码展示了如何使用Connery来构建一个能访问和处理网页内容并通过邮件发送摘要的LangChain代理。这种组合功能在内容审查、自动化报告生成、在线教育等领域有广泛应用。
实践建议
- 确保在使用Connery集成插件之前,已正确配置Connery Runner和相关环境变量。
- 在使用时,务必遵循数据安全和用户隐私相关法律法规。
- 若您需要定制更复杂的动作,可以参考Connery的开源文档进行二次开发。
如果遇到问题欢迎在评论区交流。
—END—