7、通用判别模型学习方法及应用

通用判别模型学习方法及应用

1 判别模型学习的通用框架

在机器学习中,若我们仅以经验风险最小化(ERM)为唯一目标来学习判别模型,可能会因过拟合而无法达到最佳性能。因此,我们引入了一种更通用的学习框架——最小化正则化经验风险。

1.1 软支持向量机(SVM)的优化问题

软支持向量机(SVM)的主要问题可以表示为:
[
\begin{align }
\min_{w,b,\xi_i}&\frac{1}{2} w^T w + C \sum_{i = 1}^{N} \xi_i\
\text{subject to}&\ y_i(w^T x_i + b) \geq 1 - \xi_i\
&\xi_i \geq 0, \forall i \in {1, 2, \cdots, N }
\end{align
}
]
基于上述约束条件,我们可以将(\xi_i)的两个不等式合并为一个紧凑表达式:
(\xi_i \geq \max(0, 1 - y_i(w^T x_i + b)))
我们定义一个新的函数——铰链函数(H_1(x) = \max(0, 1 - x)),它是一个单调非增的分段线性函数。这样,(\xi_i)可以表示为(\xi_i \geq H_1(y_i(w^T x_i + b)))。由于在目标函数中我们要最小化所有(\xi_i)的和,所以(\xi_i)的最优值为(\xi_i^* = H_1(y_i(w^T x_i + b)))。

将(\xi_i^*)代入软SVM问题中,我们可以将其重新表述为一个无约束优化问题:
[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值