16、其他概率分布介绍

其他概率分布介绍

在机器学习中,除了常见的概率分布,还有一些其他的概率分布也偶尔会被使用。下面将为大家详细介绍几种这样的概率分布。

1. 均匀分布

均匀分布常用于描述在空间中某个受限区域内等概率取值的随机变量。例如,在 $n$ 维超立方体 $[a, b]^n$ 内的均匀分布形式如下:
[
U(x|[a, b]^n) =
\begin{cases}
\frac{1}{(b - a)^n}, & x \in [a, b]^n \
0, & \text{otherwise}
\end{cases}
]
均匀分布的特点是在指定区域内每个点被取到的概率是相等的。

2. 泊松分布

泊松分布通常用于描述可以取任意非负整数的离散随机变量 $X$,比如计数数据。其形式为:
[
\text{Poisson}(n | \lambda) \triangleq Pr(X = n) = e^{-\lambda} \cdot \frac{\lambda^n}{n!}, \quad \forall n = 0, 1, 2, \cdots
]
其中,$\lambda$ 是该分布的参数。泊松分布的关键结果总结如下:
- 参数 :$\lambda > 0$
- 取值范围 :随机变量的定义域为 $n = 0, 1, 2, \cdots$
- 均值和方差 :$E[X] = \lambda$ 且 $var(X) = \

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值