其他概率分布介绍
在机器学习中,除了常见的概率分布,还有一些其他的概率分布也偶尔会被使用。下面将为大家详细介绍几种这样的概率分布。
1. 均匀分布
均匀分布常用于描述在空间中某个受限区域内等概率取值的随机变量。例如,在 $n$ 维超立方体 $[a, b]^n$ 内的均匀分布形式如下:
[
U(x|[a, b]^n) =
\begin{cases}
\frac{1}{(b - a)^n}, & x \in [a, b]^n \
0, & \text{otherwise}
\end{cases}
]
均匀分布的特点是在指定区域内每个点被取到的概率是相等的。
2. 泊松分布
泊松分布通常用于描述可以取任意非负整数的离散随机变量 $X$,比如计数数据。其形式为:
[
\text{Poisson}(n | \lambda) \triangleq Pr(X = n) = e^{-\lambda} \cdot \frac{\lambda^n}{n!}, \quad \forall n = 0, 1, 2, \cdots
]
其中,$\lambda$ 是该分布的参数。泊松分布的关键结果总结如下:
- 参数 :$\lambda > 0$
- 取值范围 :随机变量的定义域为 $n = 0, 1, 2, \cdots$
- 均值和方差 :$E[X] = \lambda$ 且 $var(X) = \