earth
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
16、其他概率分布介绍
本文介绍了几种在机器学习中偶尔会用到的概率分布,包括均匀分布、泊松分布、伽马分布、逆威沙特分布以及冯·米塞斯-费舍尔分布。每种分布的数学形式、关键特性及其在机器学习中的典型应用场景均有详细说明。文章还通过表格对比了这些分布的特点,并提供了实际应用案例和基于 Python 的分布采样示例,帮助读者更好地理解和应用这些概率分布。原创 2025-08-31 09:01:55 · 6 阅读 · 0 评论 -
15、图形模型:贝叶斯网络与马尔可夫随机场
本博客详细介绍了图形模型的基本概念和应用,包括贝叶斯网络和马尔可夫随机场两大类。从图形模型的表示方式、条件独立性分析、学习和推理算法,到实际应用案例(如朴素贝叶斯分类器、潜在狄利克雷分配、条件随机场和受限玻尔兹曼机)进行了系统阐述。同时,博客探讨了图形模型在结构学习、计算复杂度和配分函数等方面的挑战,并提出了应对策略。最后,展望了图形模型与深度学习的结合、大规模数据处理及可解释性增强等未来发展趋势。原创 2025-08-30 10:33:41 · 6 阅读 · 0 评论 -
14、Bayesian Learning: Concepts, Methods, and Applications
This blog provides a comprehensive overview of Bayesian learning, covering key concepts, methods, and applications in machine learning. It explores the Bayesian perspective on parameter estimation, the role of prior and posterior distributions, conjugate p原创 2025-08-29 16:06:33 · 4 阅读 · 0 评论 -
13、纠缠模型:从基础到深度生成模型的全面解析
本文全面解析了机器学习中的纠缠模型,从基础概念到深度生成模型的应用。纠缠模型通过将简单分布转化为复杂分布,为分类、回归和因子解纠缠提供了有效方法。文章详细介绍了线性高斯模型(如因子分析和概率PCA)、非高斯模型(如ICA和HOPE)以及深度生成模型(如VAE和GAN)的原理、学习方法和应用场景,展示了其在处理复杂数据分布方面的强大能力,并展望了其在图像生成、语音处理等领域的未来发展潜力。原创 2025-08-28 12:54:48 · 4 阅读 · 0 评论 -
12、混合模型:原理、算法与应用
本文深入探讨了混合模型的基本原理、核心算法及其应用,重点介绍了有限混合模型的构建方法以及期望最大化(EM)算法的优化过程。文章详细解析了高斯混合模型(GMM)和隐马尔可夫模型(HMM)的结构、训练方法及其在实际场景中的应用。此外,还提供了实验项目,展示了如何使用多元高斯模型、GMM 和阶乘 GMM 解决分类问题,并通过比较不同模型配置来确定最佳方案。文章内容覆盖理论推导、算法实现和实际应用,适合对机器学习生成模型感兴趣的读者。原创 2025-08-27 14:45:18 · 4 阅读 · 0 评论 -
11、单峰生成模型:原理与应用剖析
本文详细剖析了单峰生成模型的原理及其在不同数据类型和场景下的应用。文章介绍了单峰性的定义,以及多元高斯模型、多项模型、马尔可夫链模型和广义线性模型等几种典型的单峰生成模型,分别探讨了它们的数学原理、参数估计方法和实际应用场景。此外,还对这些模型进行了对比分析,并提供了模型选择的指导原则及优化改进策略,为解决实际问题提供了理论依据和技术支持。原创 2025-08-26 14:57:59 · 3 阅读 · 0 评论 -
10、生成模型全面解析:基础、理论与实践
本博客全面解析了生成模型的基础知识、理论框架与实际应用。与判别模型不同,生成模型通过对输入和输出的联合概率分布建模,实现最优决策。博客详细介绍了贝叶斯决策理论、插件MAP规则、密度估计方法以及最大似然估计等关键技术,并讨论了生成模型在分类、图像生成和推荐系统中的应用。同时,对生成模型面临的挑战和未来发展方向进行了深入探讨。原创 2025-08-25 16:52:25 · 2 阅读 · 0 评论 -
9、集成学习:原理、方法与实践
本文详细介绍了集成学习的基本原理和方法,包括如何选择基础模型、保持模型多样性以及组合模型以提升预测性能。重点讨论了决策树的学习算法及其在集成学习中的应用,并深入解析了装袋法(Bagging)、随机森林、提升法(Boosting)中的AdaBoost和梯度树提升(Gradient Tree Boosting)等主流集成方法。此外,还提供了在艾姆斯住房数据集上的实践项目,展示了这些方法在回归和分类任务中的实际效果。原创 2025-08-24 13:48:56 · 4 阅读 · 0 评论 -
8、神经网络:原理、结构与学习算法全解析
本文全面解析了神经网络的原理、结构与学习算法,从生物神经元的启发到人工神经元的数学建模,详细介绍了神经网络的函数逼近能力。文章深入探讨了常见的神经网络结构,如全连接深度神经网络、卷积神经网络(CNNs)、递归神经网络(RNNs)和Transformer,并分析了各自的适用场景。此外,还涵盖了神经网络的学习算法,包括损失函数设计、自动微分与反向传播、随机梯度下降(SGD)优化及其变体ADAM。文中还讨论了正则化方法、端到端学习、实验项目设计以及神经网络的应用场景和未来发展方向。原创 2025-08-23 10:11:40 · 3 阅读 · 0 评论 -
7、通用判别模型学习方法及应用
本博文介绍了判别模型学习的通用框架,包括软支持向量机(SVM)、岭回归、LASSO、矩阵分解和字典学习等关键方法。重点讨论了正则化经验风险最小化的重要性,并分析了不同损失函数的性质与应用。同时,通过实验项目展示了如何利用潜在语义分析(LSA)进行单词表示学习,并评估和可视化语义关系,为解决实际机器学习问题提供了系统性的理论基础和实践指导。原创 2025-08-22 16:43:31 · 2 阅读 · 0 评论 -
6、线性模型:从基础到高级的分类方法解析
本文详细解析了多种线性模型分类方法,从基础的感知机到高级的支持向量机(SVM),涵盖了线性回归、最小分类误差(MCE)和逻辑回归等主流算法。内容包括各类算法的原理、数学推导、优缺点分析以及适用场景,并通过实验和练习帮助读者深入理解和应用这些方法,适用于二分类及多分类问题。原创 2025-08-21 14:33:49 · 3 阅读 · 0 评论 -
5、判别模型:原理、可学习性与泛化边界
本博客系统介绍了判别模型的基本原理,包括其形式化定义、可学习性分析以及泛化边界推导。文章讨论了经验风险最小化(ERM)在有限和无限模型空间中的表现,并通过Hoeffding不等式和VC维理论分析了模型的泛化能力。此外,还探讨了未来研究方向,如更精确的泛化边界推导、复杂模型VC维的估计以及正则化技术的优化。博客旨在为读者提供对判别模型理论基础的深入理解,并为实际应用提供方法指导。原创 2025-08-20 16:21:43 · 4 阅读 · 0 评论 -
4、监督式机器学习概述与案例分析
本文全面介绍了监督式机器学习的基本概念、标准流程以及常见方法的案例分析。文章详细探讨了从特征提取、模型选择、学习准则、优化算法到经验评估的完整流程,并结合具体场景分析了如何选择合适的机器学习方法。此外,还通过多个经典方法(如线性回归、深度学习等)展示了其适用场景和操作步骤,为读者提供了一套完整的监督式机器学习应用指南。原创 2025-08-19 11:21:12 · 2 阅读 · 0 评论 -
3、机器学习中的数学基础:线性代数、概率统计、信息论与优化
本文详细介绍了机器学习中的数学基础,涵盖线性代数、概率统计、信息论与优化方法的核心概念与应用。首先讲解了向量、矩阵及其运算、特征值分解和矩阵微积分等线性代数知识,接着介绍了概率和统计的基本理论,包括随机变量、分布、期望和联合分布等内容。随后,深入探讨了信息论中的熵、互信息和KL散度,以及数学优化中的最优性条件和数值优化方法。最后,通过线性回归模型的完整构建和优化流程,展示了这些数学知识在实际机器学习任务中的应用。原创 2025-08-18 16:38:51 · 1 阅读 · 0 评论 -
2、机器学习入门:概念、原理与高级主题解析
本博客全面介绍了机器学习的基础概念、原理和高级主题。从人工智能与传统符号方法的区别入手,解析了机器学习的兴起背景和构建流程。内容涵盖监督学习与无监督学习的差异、分类与回归任务、模型复杂性与过拟合/欠拟合问题,以及偏差-方差权衡。此外,还探讨了机器学习的一般原则,如奥卡姆剃刀、没有免费午餐定理和平滑世界法则,并深入分析了维数灾难和其解决方案。在高级主题中,介绍了强化学习、元学习、因果推断等前沿领域,为读者提供了一个系统性的机器学习知识框架。原创 2025-08-17 13:57:18 · 3 阅读 · 0 评论 -
1、机器学习基础简明介绍
本文简明介绍了机器学习的基础知识,包括其发展历程、基本概念和核心方法。内容涵盖监督学习、生成模型与判别模型、神经网络、集成学习等关键主题,同时强调数学基础和实际应用。本书适合学生、研究人员和工业从业者,旨在提供清晰的学习路径和扎实的技术基础。原创 2025-08-16 14:11:34 · 4 阅读 · 0 评论