时间序列机器学习入门与经典模型详解
1. 时间序列机器学习库概述
在时间序列的机器学习领域,Python 提供了许多可靠且实用的库。这些库的存在使得算法在实际生产环境中更易于使用和部署。
首先,通过 Hassan Fawaz 的 Python 脚本生成了关键的多元时间序列分类临界差异图。在尝试了许多不同的特征集后,发现其中表现最佳的(9_stat_MulPAA)与其他特征集的差距并不显著。
以下是监督式回归和分类算法在不同库中的实现总结:
| 算法 | sktime | Pyts |
| — | — | — |
| Autoregressive Integrated Moving Average (ARIMA) | X | |
| DTW | X | X |
| BATS | X | |
| MUSE+WEASEL | X | X |
| MrSEQL | X | |
| ROCKET | X | X |
| BOSS | X | X |
| Bag-of-SFA Symbols in Vector Space (BOSSVS) | X | |
| CBOSS | X | |
| SAX-VSM | X | |
| RISE | X | |
| HIVE-COTE | X | |
| Time-Series Forest | X | |
sktime 有众多实现并非偶然,它被东安格利亚大学 Anthony Bagnall 周围的研究团队积极用于研究活动。Pyts 由巴黎脑研究所和雷米应用数学中心(CMAP)的博士